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Abstract

Our paper introduces a new estimation method for arbitrary temporal heterogeneity in

panel data models. The paper provides a semiparametric method for estimating general

patterns of cross-sectional speci�c time trends. The methods proposed in the paper are

related to principal component analysis and estimate the time-varying trend e¤ects using

a small number of common functions calculated from the data. An important application

for the new estimator is in the estimation of time-varying technical e¢ ciency considered in

the stochastic frontier literature. Finite sample performance of the estimators is examined

via Monte Carlo simulations. We apply our methods to the analysis of productivity trends

in the U.S. banking industry.

JEL Classi�cation: C13, C14, C22, C23, D24, G21.

Key words and phrases: Time trends, panel models, principal component analysis, smooth-

ing splines, banking e¢ ciency.
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1 Introduction

Substantial research interest has focused on controlling for unobserved heterogeneity in

panel models. Work by Park and Simar and Park, Sickles, and Simar (1994, 1998, 2003,

2007), and Sickles (2005) has focused on semi-parametric e¢ cient panel data estimators for

the standard �xed and random e¤ects models with various speci�cations, including autore-

gressive errors and dynamic models. As the speci�cations of unobserved heterogeneity

become more and more general, in particular allowing for temporal variation in the un-

observed e¤ects, and as trend stationarity of individual cross-sections comes under closer

scrutiny, the proper speci�cation of time e¤ects becomes no less important than the speci-

�cation of a di¤erence or trend stationary time series (Nelson and Plosser, 1982; Maddala

and Kim, 1998; Kao and Chiang, 2000; Baltagi, Egger, and Pfa¤ermayr, 2003; Mark and

Sul, 2003, Chang, 2004).

In this paper, we extend the random and �xed e¤ects model in such a way that we do

not impose any explicit restrictions on the temporal pattern of individual e¤ects. They are

considered as random functions of time, representing a sample of smooth individual time

trends. Detailed modelling and analysis of the general structure of these trends are the

central points of our methodology. This goal is particularly important in our application to

stochastic frontier analysis, where individual e¤ects allow to access time-varying technical

e¢ ciencies of banks in the U. S. banking system.

The basic qualitative assumption is a fairly smooth, slowly varying local behavior of

trends, although they may have pronounced e¤ects on temporal patterns on the long-run.

We formalize this idea and show that our model can be used for virtually any smooth

pattern of temporal and cross-sectional changes in unobserved heterogeneity (time trends)

and allows for the possibility that parameter heterogeneity is due to variables other than

the constant term. This generality is accomplished by approximating the e¤ect terms non-

parametrically. The approach is based on a factor model, where time-varying individual

e¤ects are represented by linear combinations of a small number of unknown basis func-

tions, with coe¢ cients varying across cross-sectional units. Fixed e¤ects, basis functions and

corresponding coe¢ cients are estimated from the data using methods related to principal

component analysis coupled with smoothing spline techniques. Asymptotic distributions of

the new estimators are derived, and rank tests are applied to determine the dimensionality of

the factor model. Furthermore, goodness-of-�t tests of pre-speci�ed parametric models are

elaborated. Simulation experiments indicate that in �nite samples our method works much
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better than other well known time-varying e¤ects estimators. As an illustration, the e¤ects

are interpreted in the context of a stochastic frontier production function (Aigner, Lovell,

and Schmidt, 1977) and our method is applied to the analysis of time-varying technical

e¢ ciency in the U.S. banking industry.

Factor models related to our setup have already been extensively studied in the econo-

metric literature. Among others, important contributions are given by the work of Forni

and Lippi (1997), Forni and Reichlin (1998), Stock and Watson (2002), Forni et al. (2000),

Bai and Ng (2002), Bernanke and Boivin (2003) or Ahn, Lee, and Schmidt (2005). Bai

(2003, 2009) provides a general inferential theory. Our approach fully integrates the panel

and factor models. It allows us to simultaneously estimate �xed e¤ects, common factors

(basis functions), and individual factor scores under a wide variety of conditions, includ-

ing the possible existence of dynamic e¤ects and/or correlations between individual e¤ects

and explanatory variables. Di¤erent from existing work, the asymptotic theory also covers

situations where dynamic e¤ects follow non-stationary time series models, as for example

random walks.

Another related branch of research is given by the statistical literature on �functional

data analysis�which deals with the analysis of multiple smooth curves. For an overview

one may consult the book by Ramsay and Silverman (1997). Explicit factor models and

corresponding inferential results based on �functional principal component analysis� are

given, for example, by Kneip (1994), Ferré (1995), or Kneip and Utikal (2001) for di¤erent

applications. An essential feature of our approach, taken from this literature, is the use of

nonparametric smoothing techniques as an inherent part of the estimation procedure. The

asymptotic theory of Section 3.2 indicates that econometric factor models in other contexts

may also bene�t from incorporating smoothing procedures, since compared to standard

results one may then achieve dramatically improved rates of convergence when estimating

common factors.

The remainder of the paper is organized as follows. The basic setup is described in

Section 2. Section 3 introduces our new estimator for arbitrary time-varying e¤ects, derives

its asymptotic distribution, and provides other analytical results for optimal choice for the

number of principal components and smoothing parameters. The �nite sample performance

of our new estimator is evaluated using Monte Carlo simulations in section 4. In Section 5

we use the new estimator to analyze the technical e¢ ciency of banks in the U. S. banking

system. Concluding remarks follow in Section 6. The mathematical proofs are collected in
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the Appendix.

2 Model

2.1 Basic Setup

Panel studies in econometrics provide data from a sample of individual units where each unit

is observed repeatedly over time . Econometric analysis then aims to model the variation

of some response variable Y in dependence of a vector of explanatory variables X 2 IRp.
We will assume panel data based on a balanced design with T equally spaced repeated

measurements per individual. The resulting observations of n individuals can then be

represented in the form (Yit; Xit), t = 1; : : : T , i = 1; : : : ; n, where the index i denotes

individual units (e.g. �rms, households, etc.) and the index t denotes time periods. We

consider the model

Yit = �0(t) +

pX
j=1

�jXitj + vi(t) + �it; i = 1; : : : ; n; t = 1; : : : ; T; (1)

where �0(t) denotes a general average function, and vi(t) are non-constant individual e¤ects.

In order to ensure identi�ability we require that
Pn

i=1 vi(t) = 0 for all t. We are mainly

interested in analyzing � and vi(t). The in�uence of �0(t) can be eliminated by using

centered variables Yit� �Yt, Xijt� �Xtj , where �Yt = 1
n

Pn
i=1 Yit and �Xtj =

1
n

Pn
i=1Xitj . Then

Yit � �Yt =

pX
j=1

�j(Xitj � �Xtj) + vi(t) + �it � ��i; i = 1; : : : ; n; t = 1; : : : ; T; (2)

with ��t = 1
n

Pn
i=1 �it. Note that after having estimated � and vi(t), the average function

�0(t) may be estimated in a �nal step of our analysis (see Section 3).

In this approach �individual e¤ects�vi(t) necessarily play a more important role than in

textbook panel data models. Identi�ability of (1) requires that all variablesXitj , j = 1; : : : ; p

possess considerable variation over t. All individual di¤erences are captured by vi(t), and

this includes the e¤ects of additional variables, like e.g. socioeconomic attributes, which

characterize individuals but do not change over time. For example, suppose that there are

q additional explanatory variables Xi;p+1; : : : ; Xi;p+q which do not change over time. The

traditional framework then leads to the model Yit = �0+
Pp

j=1 �jXitj+
Pp+q

j=p+1 �jXij+� i+

�it with constant individual coe¢ cients � i. In model (1), vi(t) then is a constant function

with vi(t) �
Pp+q

j=p+1 �jXij + � i.
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Our focus lies on estimating and analyzing vi(t), t = 1; : : : ; T . This is of course moti-

vated by our application in the �eld of stochastic frontier analysis, where individual e¤ects

determine technical e¢ ciencies and are the main quantity of interest. We will additionally

rely on the following structural assumption:

Assumption 1. For some �xed L 2 f0; 1; 2; : : : g, L < T , there exists an L-dimensional

subspace LT of IRT such that vi 2 LT holds with probability 1.
The space LT as well as its dimension L are unknown. But the assumption implies that

vi can be parametrized in terms of suitable basis functions (common factors) g1; : : : ; gL with

LT := spanfg1; : : : ; gLg and corresponding individual coe¢ cients:

vi(t) =
LX
r=1

�irgr(t): (3)

The centered model (2) can then be rewritten in the form

Yit � �Yt =

pX
j=1

�j(Xitj � �Xtj) +
LX
r=1

�irgr(t) + �it � ��t; i = 1; : : : ; n; t = 1; : : : ; T (4)

Our approach consists in using the data in order to estimate L as well as basis functions

g1; : : : ; gL and corresponding coe¢ cients �ir.

Parametric mixed e¤ects models of the form (4) are widely used in applications and

assume that individual e¤ects can be modeled by linear combinations of pre-speci�ed basis

function (e.g. polynomials). For example, in the context of production frontier analysis

Cornwell, Schmidt, and Sickles (1990) assume that the vi can be modeled by quadratic

polynomials. In our notation, then L = 3 and LT is the space of all quadratic polynomials.
Obviously, our approach is much more �exible and avoids misspeci�cations by using the

data to determine the structure of basis functions.

Indeed, it does not seem to be very restrictive to require that (3) holds for some L.

Formally, (3) is always ful�lled if for all su¢ ciently large n; T the empirical covariance matrix

�n;T of the vectors (vi(1); : : : ; vi(T ))0, i = 1; : : : ; n, possesses rank L. This corresponds to

the setup of factor models as considered by Bai (2003, 2009) or Ahn et al. (2005). Recall,

however, that di¤erent from the cited papers our focus lies upon analyzing non-stationary,

smooth time trends.

There are several advantages of (3) compared to a completely nonparametric analysis of

v1; : : : ; vn. An important point is more e¢ cient estimation. The basis functions g1; : : : ; gL

represent a common functional structure and can thus be determined by combining infor-

mation from all individual curves. They can thus be estimated with much faster rates of
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convergence than an individual vi. Under some additional assumptions, the coe¢ cients �ri

are then obtained with the same rate of convergence as if g1; : : : ; gL were known. Roughly

speaking, (3) dramatically improves accuracy of estimates and allows to determine v1; : : : ; vn

with parametric rates of convergence.

Furthermore, (3) is well-suited for economic interpretation and further econometric

analysis. By g1; : : : ; gL we denote general functional components whose structure provide

information about the common functional structure of all individual v1; : : : ; vn. There may

exist a substantial interpretation in terms of general economic developments.

All di¤erences between individuals are captured by the coe¢ cients �ir. For exam-

ple, a standard panel model as discussed above leads to L = 1, g1(t) � 1, and �i1 =Pp+q
j=p+1 �jXij + � i. When having estimated �i1, estimates of �p+1; : : : ; �p+q can then be

obtained from a linear regression of �i1 on Xi;p+1; : : : ; Xi;p+q. This generalizes to more in-

teresting situations with L � 1 and non-constant functions gr(t). E¤ects of socioeconomic
or demographic variables which do not change over time may be quanti�ed by regressing

the scores �ir on Xi;p+1; : : : ; Xi;p+q. In many applications such regressions will constitute

an important step in econometric analysis.

2.2 Identi�ability and standardization

An intrinsic problem of factor models is non-uniqueness of common factors. Given some

basis g1; : : : ; gL, for every regular L� L matrix A the linear transformation

(g1(t); : : : ;gL(t))
0 := A � (g1(t); : : : ; gL(t))0; (#1i; : : : ; #Li)0 := A�1 � (�1i; : : : ; �Li)0; (5)

leads to a parametrization with alternative basis functions and coe¢ cients such that

vi(t) =

LX
r=1

�irgr(t) =

LX
r=1

#irgr(t)

holds with probability 1, and LT := spanfg1; : : : ; gLg = spanfg1; : : : ;gLg. Only LT is
uniquely determined but not a particular basis. If for example L = 2 and LT is the

space of all linear functions, then two equivalent parameterization are given by vi(t) =

#i1(2t� 5) + #i2(t+ 5) and vi(t) = �i1 + �i2t, where �i1 = 5(#i2 � #i1) and �i2 = 2#i1 + #i2.
Any underlying, �generic� basis is thus only identi�able up to linear transformations

of the form (5). In order to specify a well-de�ned estimation problem we will rely on the

following standardization which identi�es a suitable parametric representation out of the

equivalence class given by (5):
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(a) 1
n

Pn
i=1 �

2
i1 � 1

n

Pn
i=1 �

2
i2 � � � � � 1

n

Pn
i=1 �

2
iL > 0.

(b) 1
n

Pn
i=1 �ir = 0 and

1
n

Pn
i=1 �ir�is = 0 for all r; s 2 f1; : : : ; Lg, r 6= s:

(c) 1
T

PT
t=1 gr(t)

2 = 1 and
PT

t=1 gr(t)gs(t) = 0 for all r; s 2 f1; : : : ; Lg, r 6= s:

Provided that n > L, T > L, Conditions (a) - (c) do not impose any restriction, and

they introduce a suitable normalization which ensures identi�ability of the components up

to sign changes (instead of �ir; gr one may also use ��ir;�gr). Note that (a) - (c) lead to
orthogonal vectors gr as well as empirically uncorrelated coe¢ cients �ir. 1

In a textbook panel model we have L = 1 and LT is the space of all constant functions.
Our normalization then leads to g1(t) � 1. The model by Battese and Coelli (1992) corre-
sponds to L = 1 and g1(t) = exp(��(t � T ))=

q
1
T

PT
s=1 exp(��(s� T ))2. For L > 1, the

speci�c structure of gr will usually depend on n and T (gr � gr;n;T ). But the real objects

of interest are the structure of the factor space LT and the distribution of vi within LT . If
there exists a �true�basis g1; : : : ;gL generating vi, then it will necessarily be connected with

g1; : : : ; gL by a linear transformation (5) for some (unidenti�able) matrix A, and there is a

unique space LT = fvjv =
PL

r=1 �rgr; �1; : : : ; �L 2 IRg = fvjv =
PL

r=1 #rgr; #1; : : : ; #L 2
IRg (as e.g. a linear space, a space of quadratic polynomials, etc.). Relation (5) also implies
that there exists a corresponding one-to-one relation between the coe¢ cients #ir and �ir

for any possible realization vi, and the distribution of (�1i; : : : ; �iL) re�ects all aspects of

the distribution of vi(t). In this sense conditions (a) - (c) de�ne a speci�c set of orthogonal

basis functions which can be estimated with a particularly high degree of accuracy (see

Subsection 3.3). Of course, suitable rotations of estimated gr may be applied in subsequent

analysis.

Our estimation procedure will be based on the fact that under the above normalization

g1; g2; : : : are to be obtained as principal components of the sample

v1 = (v1(1); : : : ; v1(T ))
0; : : : ; vn = (vn(1); : : : ; vn(T ))0. More precisely, let

�n;T =
1

n

nX
i=1

vivi
0 (6)

denote the empirical covariance matrix of v1; : : : ; vn (recall that
Pn

i=1 vi = 0). We use

�1 � �2 � � � � � �T as well as 1; 2; : : : ; T to denote the resulting eigenvalues and

orthonormal eigenvectors of �n;T . Some simple algebra [compare, e.g., with Rao (1958)]

9



then shows that

gr(t) =
p
T � rt for all r = 1; : : : ; L; t = 1; : : : ; T; (7)

�ir =
1

T

TX
t=1

vi(t)gr(t) for all r = 1; 2; : : : ; L; i = 1; : : : ; n; (8)

�r =
T

n

nX
i=1

�2ir for all r = 1; 2; : : : ; L (9)

Furthermore, for all l = 1; 2; : : :

TX
r=l+1

�r =
1

n

X
i;t

(vi(t)�
lX

r=1

�irgr(t))
2 =

1

n
min
~g1;:::;~gl

nX
i=1

min
#i1;:::;#il

TX
t=1

(vi(t)�
lX

r=1

#ir~gr(t))
2 (10)

One can infer from relation (10) that vi �
Pl

r=1 �irgr(t) provides the best possible approx-

imation of the functions vi in terms of an l-dimensional linear model. If n > L, T > L,

Model (3) holds for some dimension L if and only if rank(�n;T ) = L.

Let us consider the structure of possible spaces LT more closely. In the context of mixed
e¤ects models LT will be a deterministic space of smooth functions. As discussed above,
examples are spaces of linear functions or quadratic polynomials. The population analogue

of �n;T is then the covariance matrix �T with �T = limn!1�n;T a.s, and for large n the

function gr will be close to the corresponding principal component of �T .

A basic motivation of our paper is to develop a method which is capable to deal with any

smooth pattern of temporal changes in individual e¤ects. However, from a time series point

of view �smooth�trends are often described by discrete time stochastic processes. In this

case, basis functions are generated by an underlying random mechanism, and consequently

LT is a random space. For example, let us study the case that all vi are generated by

linear combinations of L independent random walks. More precisely, suppose that

LT = spanfg1; : : : ;gLg; where gr(t+ 1) = gr(t) + �r;t; r = 1; : : : ; L (11)

for some �xed g1(1); : : : ;gL(1) and i.i.d. innovations �r;1; �r;2; : : :withE(�r;t) = 0, var(�r;t) =

�2�;r. Moreover, �r;t is independent of �s;t for r 6= s. The structure of LT then depends on
the realizations of �r;t and thus is random. The particular basis g1; : : : ;gL will of course

not correspond to g1; : : : ; gL, but recall that necessarily LT = spanfg1; : : : ; gLg if n; T are
su¢ ciently large.

By de�nition, v 2 LT means that there are parameters #1; : : : ; #L such that v(t) =PL
r=1 #rgr(t) = v(t � 1) +

PL
r=1 #r�r;t. Each v in LT is thus a random walk with inde-

pendent innovations �v =
PL

r=1 #r�r;t. This of course carries over to our sample functions
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vi =
PL

r=1 #irgr(t). We assume that each statistical unit of the population possesses an

individual, �xed set of coe¢ cients.

3 Estimation and theoretical results

3.1 Estimation

In practice, v1; : : : ; vn are unknown and all components of model (4) thus have to be esti-

mated from the data. The idea of our estimation procedure can be described as follows:

Recall that individual e¤ects are supposed to represent �smooth� trends. The �rst step

of our procedure relies on the use of an auxiliary functional variable �i de�ned on the in-

terval [1; T ] which interpolates the T di¤erent values of vi. Estimates �̂ and functional

approximations �̂i are determined by least squares, where smoothness of �̂i is controlled by

a roughness penalty. Then an estimate v̂i(t) of vi(t) is de�ned as v̂i(t) := �̂i(t), t = 1; : : : ; T .

This corresponds to a penalized least squares approach similar to methods proposed, for

example, by Engle et al. (1986), Speckman (1988), or Härdle et al. (2000). Two further

steps of our procedure then provide estimates ĝr and �̂ir of the components of the factor

decomposition. It will be shown in Section 3.2 that
PL

r=1 �̂irĝr provide much more e¢ cient

estimates of vi than the purely nonparametric estimates v̂i.

Let us �rst introduce some additional notations. Let �Yt = 1
n

Pn
i=1 Yit, �Y = (�Y1; : : : ; �YT )

0,

Yi = (Yi1 : : : ; YiT )
0 and �i = (�i1; : : : ; �iT ). Furthermore, let Xij = (Xi1j ; : : : ; XiT j)

0, �Xtj =

1
n

Pn
i=1Xitj , and �Xj = ( �X1j ; : : : ; �XTj)

0. We will use Xi and �X to denote the T �p matrices
with elements Xitj and �Xtj .

Step 1: For a preselected smoothing parameter � > 0 determine estimates �̂1; : : : ; �̂p

and functional approximations �̂1; : : : ; �̂n by minimizing
nX
i=1

1

T

X
t

�
Yit � �Yt �

pX
j=1

�j(Xitj � �Xtj)� �i(t)
�2
+

nX
i=1

�
1

T

Z T

1
(�
(m)
i (s))2ds (12)

over all possible values of � and all m-times continuously di¤erentiable functions �1; : : : ; �n

on [1; T ]. Then estimate vi(t) by v̂i(t) := �̂i(t), t = 1; : : : ; T , i = 1; : : : ; n. Here, �(m)i

denotes the m-th derivative of �i.

Spline theory implies that any solution �̂i, i = 1; : : : ; n, of (12) possess an expansion

�̂i(t) =
PT

j=1 �̂jizj(t) in terms of a natural spline basis z1; : : : ; zT of order 2m (for a discus-

sion of natural splines and de�nitions of possible basis functions see, for example, Eubank,

1988). In practice, one will often choose m = 2 which leads to cubic smoothing splines.
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If Z and A denote T � T matrices with elements fzj(t)gj;t=1;:::;T and
f
R T
1 z

(m)
j (s)z

(m)
k (s)dsgj;k=1;:::;T , the above minimization problem can be reformulated in

matrix notation: Determine �̂ = (�̂1; : : : ; �̂p)
0 and �̂i = (�̂1i; : : : ; �̂Ti)

0 by minimizing

nX
i=1

�
kYi � �Y � (Xi � �X)� � Z�ik2 + �� 0iA�i

�
; (13)

where k � k denotes the usual Euclidean norm in IRT , kak =
p
a0a.

Note that Z is a regular T � T matrix. It is then easily seen that with

Z� = Z(Z 0Z + �A)�1Z 0 =
�
I � �(Z 0)�1AZ�1

��1
the solutions are given by

�̂ =

 
nX
i=1

(Xi � �X)0(I �Z�)(Xi � �X)

!�1 nX
i=1

(Xi � �X)0(I �Z�)(Yi � �Y ) (14)

as well as

�̂i = (Z
0Z + �A)�1Z 0(Yi � �Y � (Xi � �X)�̂):

Therefore,

v̂i = Z�̂i = Z�(Yi � �Y � (Xi � �X)�̂) (15)

estimates vi = (vi(1); : : : ; vi(T ))0.

Note that Z� is a positive semi-de�nite, symmetric matrix. All eigenvalues of Z� take
values between 0 and 1. Moreover, tr(Z2�) � tr(Z�) � T .

Step 2: Determine the empirical covariance matrix �̂n;T of

v̂1 = (v̂1(1); v̂1(2); : : : ; v̂1(T ))
0; : : : ; v̂n = (v̂n(1); v̂n(2); : : : ; v̂n(T ))0 by

�̂n;T =
1

n

nX
i=1

v̂iv̂
0
i

and calculate its eigenvalues �̂1 � �̂2 � : : : �̂T and the corresponding eigenvectors ̂1; ̂2; : : : ; ̂T .

Step 3: Set ĝr(t) =
p
T � ̂rt, r = 1; 2; : : : ; L, t = 1; : : : ; T , where ̂rt is the t�th element

of the eigenvector ̂r. For all i = 1; : : : ; n then determine �̂1i; : : : ; �̂Li by minimizing

TX
t=1

0@Yit � �Yt �
pX
j=1

�̂j(Xitj � �Xtj)�
LX
r=1

�riĝr(t)

1A2 (16)

with respect to �1i; : : : ; �Li. 2
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Remarks:

1) In spite of the use of an auxiliary functional variable in Step 1 of our procedure, the

required �smoothness� of vi(t) has to be interpreted in a very general sense. In Section

3.2 we will show that the estimators adopt fast rates of convergence if all vi are su¢ ciently

smooth in the sense that 1
T

PT�1
t=2 (vi(t � 1) � 2vi(t) + vi(t + 1))

2 is small compared to
1
T

PT
t=1 vi(t)

2.

2) An obvious problem is the choice of �. A possible approach based on cross-validation

will be discussed at the end of Subsection 3.2.

3.2 Asymptotic Theory

We now consider properties of our estimators. It is assumed that individual units are

drawn by independent random sampling from the underlying population. We then analyze

the asymptotic behavior as n; T !1. We do not impose any condition on the magnitude
of the quotient T=n. Our analysis will be based on the use of cubic smoothing splines with

m = 2. We will require that Assumption 1 holds with a �xed dimension L for all n; T .

The following additional assumptions now provide the basis of our theoretical analysis.

We will write �min(A) and �max(A) to denote the minimal and maximal eigenvalues of a

symmetric matrix A, and gr will be used to represent the vector (gr(1); : : : ; gr(T ))0.

Assumption 2. There exists a nondecreasing function c(T ) of T such that for all r; s =

1; : : : ; L, r 6= s

- E( 1T
PT

t=1 vi(t)
2) = O(c(T )),

- 1
n

Pn
i=1 �

2
ir = OP (c(T )), 1

n

Pn
i=1 �

4
ir = OP (c(T )

2),

- c(T ) = OP (
1
n

Pn
i=1 �

2
ir), c(T ) = OP (j 1n

Pn
i=1 �

2
ir � 1

n

Pn
i=1 �

2
isj)

Note that by (9) and (10) we have 1
nT

Pn
i=1

PT
t=1 vi(t)

2 =
PL

r=1
1
n

Pn
i=1 �

2
ir, as well asPL

r=l
�r
T =

PL
r=l

1
n

P
i=1n

�2ir =
1
nT min

~g1;:::;~gl

Pn
i=1 min

#i1;:::;#il

TP
t=1
(vi(t)�

lP
r=1

#ir~gr(t))
2

for all l = 1; : : : ; L � 1. By requiring that 1
n

Pn
i=1 �

2
ir = OP (c(T )) as well as c(T ) =

OP (
1
n

Pn
i=1 �

2
ir) we assume that each component

1
n

Pn
i=1 �

2
ir increases exactly with rate c(T ).

This is obviously equivalent to saying that for any l < L the error in approximating vi by

the best possible model with only l components increases exactly with rate c(T ). Constants

have to be di¤erent, for example
Pn

i=1 �
2
i1 may be equal to c(T )=2,

Pn
i=1 �

2
i2 to c(T )=10,

etc.

13



Assumption 3. There exists a nonincreasing function b(T ) of T such that as n; T !1
the second order di¤erences of vi(t) satisfy

E

 
1

T

T�1X
t=2

(vi(t� 1)� 2vi(t) + vi(t+ 1))2
!
= O(b(T )) (17)

By Proposition 1 in the appendix the value of b(T ) determines the bias of a smoothing

spline estimator for all values of � and may serve as a measure of smoothness. An even more

interesting quantity is b(T )=c(T ). It will be shown in Theorem 1 that the smaller b(T )=c(T )

the faster the corresponding rate of convergence for suitable choice of �. Of course, by

Assumption 1) smoothness of vi re�ects the degree of smoothness of the underlying basis

functions.

In order to clarify the impact of the above assumption, let us study some illustrative

scenarios.

Example 1: Traditional smoothness. We �rst consider the typical setup of nonparametric

mixed e¤ects models where LT is a deterministic space generated by smooth, at least

twice continuously di¤erentiable basis functions. The corresponding asymptotics can be

formalized by assuming that there are i.i.d. non-zero random functions �1; : : : ; �n on L2[0; 1]

such that �i( tT ) = vi(t) for t = 1; : : : ; T . Then c(T ) = 1. The functions �1; : : : ; �n are a.s.

twice continuously di¤erentiable with E(
R 1
0 �

00
i (t)

2dt) <1 and 0 < E(
R 1
0 �i(t)

2dt) <1. By
Taylor expansions we obtain �i( tT )� 2�i(

t�2
T ) + �i(

t�4
T ) =

1
T 2
� 00i (t) + oP (

1
T 2
) and therefore

E
�
1
T

PT
t=5(vi(t)� 2vi(t� 2) + vi(t� 4))2

�
= 1

T 4
E(
R 1
0 �

00
i (t)

2dt) + o( 1
T 4
).

The relevant quantities in Assumptions 2 and 3 thus amount to

c(T ) = 1; b(T ) = b(T )=c(T ) = 1=T 4: (18)

In this context it is of course also possible to deal with less smooth situations. If the

�i are only piecewise smooth, possessing a �nite number of discontinuities, then b(T ) =

b(T )=c(T ) = 1=T .

Example 2: Random walks. Recall the discussion in Section 2.2 and assume that vi are

generated by a linear combination of L independent random walks as de�ned by (11). Then

E( 1T
PT

t=1 vi(t)
2) = O(T ). However, the mean squared second di¤erences of random walks

remain bounded as T !1. Therefore, in this situation we can assume that Assumption 2
and 3 holds with

c(T ) = T; b(T ) = 1; b(T )=c(T ) = 1=T (19)

14



Note that if LT = spanfg1; : : : ;gLg, where g1; : : : ;gL are I(2) processes whose �rst di¤er-
ences are random walks, then E( 1T

PT
t=1 vi(t)

2) = O(T 2), while the mean squared second

di¤erences still remain bounded. Then c(T ) = T 2; b(T ) = 1; b(T )=c(T ) = 1=T 2.

We also want to emphasize that our approach is also able to deal with non-I(q) processes.

Let LT = spanfg1; : : : ;gLg with gr(t) =
p
jgr(1)2 + �r;1 + �r;2 + � � �+ �r;tj, where gr(1)

and �r;t satisfy the same conditions as in the above random walk example. The stochastic

trend induced by this process cannot be eliminated by di¤erencing, since for any q = 1; 2; : : :

the q-th order di¤erences of rt are not stationary. On the other hand, the resulting vi(t)

are reasonably smooth. It is easily checked that then Assumptions 2) and 3) hold with

c(T ) = T 1=2; b(T ) = T�1=2; b(T )=c(T ) = 1=T .

Two �nal assumptions now concern the behavior of Xit;j and of the error term.

Assumption 4. There exists a nondecreasing function d(T ) � c(T ) of T with d(T ) = o(T )

such that as n; T !1 E( 1T
PT

t=1X
2
it;j) = O(d(T )) holds for all j = 1; : : : ; p as n; T !1.

Furthermore, there is a constant C0 <1 such that for all � � 1

E

 
�max

 
[
nX
i=1

(Xi � �X)0(I �Z�)(Xi � �X)]�1

!!
� C0

1

nT
; (20)

and there exists a constant C1 <1 such that for all j = 1; : : : ; p and all vectors a 2 RT

a0(I �Z�) �E
�
(Xij � �Xj)(Xij � �Xj)

0j LT
�
(I �Z�)a � C1 � k(I �Z�)ak2: (21)

holds with probability 1 for all su¢ ciently large n; T .

If LT is a deterministic space, then of course E(ZjLT ) = E(Z) for any random variable

Z.

Assumption 5. The error terms �it are i.i.d. with E(�it) = 0, var(�it) = �2 > 0, and

E(�8it) <1. Moreover, �it is independent from vi(s) and Xis;k for all t; s; j.

Although, as shown above, our approach is able to cope with trends which do not �t into

the usual I(q) framework, some of our assumptions are restrictive from a time series point of

view. Apart from assuming i.i.d. errors in Assumption 5, Assumption 4 contains regularity

conditions which impose restrictions on the design matrix. It is essentially required that the

time paths fXitj � �Xijgt are �less smooth�than those of fvi(t)gt. In particular, stationary
processes generate non-smooth time paths. Note, however, that some interesting cases, as

for example cointegration between Y and X, are excluded. We believe that more general

results can be obtained, but part of the methodology may have to be adapted to the speci�c

situation.
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However, Assumption 4 does not impose any strong restriction when dealing with sta-

tionary processes Xit satisfying d(T ) = 1. To illustrate the point, consider the simplest

case p = 1 and assume that Xit = ~Xit + �i, where f ~Xitgt are independent realizations of a
zero mean ARMA(q1; q2) process and �i are independent, zero mean random variables with

variance �2: Then

E
�
(Xi � �X)(Xi � �X)0

�
= (1� 1

n
)� + �2 � 110;

where � is the autocovariance matrix of the underlying ARMA(q1; q2) process. Since p = 1

we have E[(Xi � �X)0(I � Z�)(Xi � �X)]) = E[�max((Xi � �X)0(I � Z�)(Xi � �X))]), and it

is easily checked that this term is proportional to T for all � > 1. Relation (20) is an

immediate consequence. Moreover,

E
�
(Xi � �X)(Xi � �X)0j LT

�
= (1� 1

n
)�jLT +E(�

2
i j LT ) � 110;

where �jLT denotes the corresponding conditional autocovariance matrix given LT . Since
by construction of Z�, Z�1 = 1 for 1 = (1; 1; : : : ; 1)0; we arrive at

a0(I �Z�)E
�
(Xij � �X)(Xij � �X)0j LT

�
(I �Z�)a = a0(I �Z�)�jLT (I �Z�)a:

For any stationary ARMA(q1; q2) the maximal eigenvalue of � remains bounded as T !
1, and hence (21) is necessarily ful�lled for deterministic spaces LT with �jLT = �. If

LT is generated by stochastic processes, then the structure of the ARMA(q1; q2)-process

characterizing the explanatory variable may be correlated with these processes, but (21)

will remain true if �max(�jLT ) remains stochastically bounded, which does not seem to be

a very strong condition.

Our estimator can be seen as a generalization of the LSDV estimator in a standard

panel model. Let us focus on the simple situation that L = 1, vi(t) = �i1 and that there is

some correlation between �i1 and Xi. In dynamic panel models as well as some nonlinear

models it is well-known that the LSDV estimator of the coe¢ cients � then su¤ers from

an incidental parameter bias (see e.g. Hahn and Newey, 2004, for a possible approach to

bias reduction in nonlinear models). However, for a linear panel model with exogeneous

regressors and i.i.d. error terms (as considered in our paper) the LSDV estimator �̂ of �

is unbiased even in the presence of correlations. In this context an incidental parameter

problem only exists for the estimates �̂i1 of the individual e¤ects vi(t) � �i1 (Baltagi, 2001).

These estimates �̂i1 are inconsistent unless T !1.
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Our results re�ect this situation. If a standard panel model with correlated �i1 and

Xi our �-estimates remain unbiased, but by Theorem 1 (c) consistency of �̂i1 requires

that T ! 1. Before stating our main theorem we have to introduce some additional

notation. Let ST denote the linear space of all vectors ~a 2 IRT which are straight lines,
i.e. ~at = �0 + �1t for some �0; �1 2 IR, t = 1; : : : ; T , and let S�T � IRT be the linear

space orthogonal to ST . Any vector a 2 IRT can be written in the form a = ~a+ a�, where

~a 2 ST and a� 2 S�T is the nonlinear part of a orthogonal to straight lines. Consequently,
vi = ~vi + v�i and Xij = ~Xij +X�

ij can be decomposed into linear and nonlinear parts with

~v; ~Xij 2 ST and v�i ; X�
ij 2 S�T .

We will say that vi and Xi are �uncorrelated up to linear components� (ulc-

uncorrelated) if E(v�i v
�
l jX�;LT ) = E(v�i v�l jLT ) holds for all i; l 2 f1; : : : ; ng, where X� =

(X�
itj)i;t;j .

We want to emphasize that vi andXi are necessarily ulc-uncorrelated in a standard panel

model with constant individual e¤ects and q additional explanatory variablesXi;p+1; : : : ; Xi;p+q

which do not change over time. Then vi � ~vi for the constant function ~vi(t) �
Pp+q

j=p+1 �j(Xij�
�Xj) + � i � �� , and hence v�i � 0 does not depend at all on X.
By Assumption 4 we necessarily have X� 6= 0. The bias of our parameter estimators

�̂ will depend on whether or not vi and Xi are ulc-correlated. In order to provide some

intuition note that a basic property of spline estimators is the fact that for any straight line

~a we have Z�~a = ~a and (I � Z�)~a = 0 for all values of �. When considering the structure
of our estimator �̂ given by (14) it is now easily seen that all linear parts ~Xij and ~vi cancel

out and do not at all in�uence �̂. Therefore, only correlation between the nonlinear parts

v�i and X
�
ij can create an additional bias.

We will use �E��to denote conditional expectation given vi and Xi, i = 1; : : : n. More-

over, ~Xi = Xi� �X. Additionally note that eigenvectors are only unique up to sign changes.

In the following we will always assume that the right �versions� are used. This will go

without saying.

Recall that we consider theoretical behavior of our estimators as n; T ! 1. Sensible
smoothing parameters have to depend on n; T . We will require that parameters � � �n;T > 0

are of an appropriate order of magnitude such that �b(T ) ! 0 as well as �1=4=T ! 0 as

n; T !1.
Theorem 1. Under the above assumptions we obtain as n; T !1
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(a) k� �E�(�̂)k = OP (
p
b�(n; T; �)), where

b�(n; T; �) :=

8>><>>:
maxf1;�gb(T )

Tn if Xi and vi are ulc-uncorrelated,

maxf1;�gb(T )
T else,

and V �1=2n;T (�̂ �E�(�̂)) � N(0; I), where

Vn;T = �2

 
nX
i=1

~X 0
i(I �Z�) ~Xi

!�1 nX
i=1

~X 0
i(I �Z�)2 ~Xi

! 
nX
i=1

~X 0
i(I �Z�) ~Xi

!�1
= OP

�
1

nT

�
:

Therefore, k� � �̂k = j� �E�(�̂)� (�̂ �E�(�̂))k = OP (
p
b�(n; T; �) + 1=(nT )).

(b) For all r = 1; : : : ; L

T�1=2kgr�ĝrk = OP

 s
�b(T ) + d(T )b�(n; T; �)

c(T )
+

s
1

nc(T )maxf1; �1=4g
+

1

T 2c(T )2

!
;

where � = minf�; �2g.

(c) For all r = 1; : : : ; L

j�̂ri � �rij = OP

�q
T�1 + �b(T ) + d(T )b�(n; T; �) + (nmaxf1; �1=4g)�1

�
:

Furthermore, if �b(T ) + d(T )b�(n; T; �) + (nmaxf1; �1=4g)�1 = o(T�1), then

p
T (�̂1i � �1i; : : : ; �̂Li � �Li)0 !d N(0; �

2I); i = 1; : : : ; n: (22)

(d) Pn
i=1 kvi �

PL
r=1 �̂riĝrkPn

i=1 kvik
= OP

0@sT�1 + �b(T ) + d(T )b�(n; T; �) + (nmaxf1; �1=4g)�1
c(T )

1A :

(e) If additionally T
nmaxf1;�1=4g ! 0 as well as Td(T )b�(n; T; �)+

d(T )
n + 1

Tc(T ) = o
�

T
nmaxf1;�1=4g

�
,

then

n
PT

r=L+1 �̂r � (n� 1)�2 � tr(Z�P̂LZ�)

�2
q
2n � tr((Z�P̂LZ�)2)

!d N(0; 1); (23)

n � tr(PL�̂n;T )� (n� 1)�2 � tr(Z�PLZ�)
�2
p
2n � tr((Z�PLZ�)2)

!d N(0; 1); (24)

where P̂L = I � 1
T

PL
r=1 ĝrĝ

0
r, and PL is the projection matrix projecting into the

n� L dimensional linear space orthogonal to spanfZ�g1; : : : ;Z�gLg.
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A proof of the theorem can be found in the appendix. Obviously, convergence rates

depend on the values of c(T ), b(T ) and d(t). As an illustration let us evaluate the rates to

be obtained for the two examples discussed above.

Example 1: Traditional smoothness (continued). If d(T ) = 1, then by (18) optimal

smoothing parameters � � �n;T for estimating the functional components gr have to increase

with the sample size. More precisely, � � (nT )�4=5 � T 4 if n = o(T 4) and T = o(n4), which

leads to �b(T ) � (nT )�4=5. Then necessarily b�(n; T; �) = o(1=
p
nT ), and the theorem

implies that

T�1=2kgr � ĝrk = OP ((nT )
�2=5);

Pn
i=1 kvi �

PL
r=1 �̂riĝrkPn

i=1 kvik
= OP (T

�1=2)

V
�1=2
n;T (�̂ � �) � N(0; I); and

p
T (�̂1i � �1i; : : : ; �̂Li � �Li)0 !d N(0; �

2I):

It is immediately seen (22) implies that �̂ri is estimated as e¢ ciently as in a parametric

model with known functions gr. We want to emphasize that � � (nT )�4=5 � T 4 corresponds
to an undersmoothing of individual functions. The optimal smoothing parameter for spline

estimation of an individual function vi is of order �ind � T�4=5 � T 4 which results in the
usual nonparametric rate of convergence

Pn
i=1 kvi � v̂ik=(

Pn
i=1 kvik) = OP (T

�2=5). Based

on our factor model it is thus possible to estimate the functions vi with a parametric rate

of convergence T�1=2 instead of the nonparametric rate T�2=5 characterizing a completely

nonparametric approach.

Example 2: Random walks (continued). In addition to (19) assume that, as for example

in the case of ARMA(p; q)-processes, Xit satis�es Assumption 4 with d(T ) = 1. Suitable

smoothing parameters � � �n;T for estimating the functional components gr have to decrease

with the sample size. With � � (nT )�1=2 we have �b(T ) = (nT )�1=2. The bias in estimating
� is of order �b�(n; T ) = O(1=

p
nT ) if Xi and vi are ulc-uncorrelated, and �b�(n; T ) =

O(1=
p
T ) else. It will thus not be negligible compared to the standard error. The additional

requirements ensuring the distributional results in Theorem 1c) hold if vi and Xi are ulc-

uncorrelated, while 1e) additionally requires that n > T . Furthermore,

T�1=2kgr� ĝrk = OP (T
�3=2+(nT )�1=2);

Pn
i=1 kvi �

PL
r=1 �̂riĝrkPn

i=1 kvik
= OP (T

�3=2+(nT )�1=2);

which shows that the relative error in approximating vi by
PL

r=1 �̂riĝr is even smaller than

in the case of traditional smoothness. Note that when approximating vi by nonparametric

estimates v̂i, then variance of the estimator does not decrease with n, and the convergence

rate deteriorates to
Pn
i=1 kvi�v̂ikPn
i=1 kvik

= OP (T
�1=2).
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Remarks:

1) The question arises whether it is possible to determine the best smoothing parameter

for estimating g1; g2; : : : directly from the data. A straightforward approach consists in

a �leave-one-individual-out� cross-validation. For a �xed L and i = 1; : : : ; n let �̂�i and

ĝr;�i denote the respective estimates of � and gr obtained from the data (Ykj ; Xkj), k =

1; : : : ; i�1; i+1; : : : ; n, j = 1; : : : ; T , and let �̂r;�i denote the corresponding estimates of �ri
to be obtained when using �̂�i , ĝr;�i instead of �̂, ĝr in Step 3 of our estimation procedure.

All these estimates depend on �, and one may approximate an optimal smoothing parameter

by minimizing

CV (�) :=
1

nT

nX
i=1

TX
t=1

(Yit � �Yt � (Xit � �Xt)�̂�i �
LX
r=1

�̂r;�iĝr;�i(t))
2

over �. Note that by (4) and by the independence of �̂�i; ĝr;�i from �it

E�[CV (�)] =
1

nT

nX
i=1

TX
t=1

 
(Xit � �Xt)(� � �̂�i) + vi �

LX
r=1

�̂r;�iĝr;�i(t)

!2
+
(n� 1)(T � L)

nT
�2

+OP

 
1

n
[
1

nT

nX
i=1

TX
t=1

((Xit � �Xt)(� � �̂�i) + vi �
LX
r=1

�̂r;�iĝr;�i(t))
2]1=2

!

holds for all �. It therefore seems to be reasonable to expect that this approach �in

tendency� selects a � providing a small mean squared error between true and estimated

model. Cross-validation techniques are standard practice in nonparametric regression, but

even in the random walk example discussed above it will provide smoothing parameters of

the right order of magnitude. Due to bias any sequence � � �n;T with � ! 1 as n; T !
will lead to P (CV (�) > C) ! 1 for any constant C > 0, while Theorem 1 implies that a

monotonically decreasing sequence � � �n;T yields CV (�) !P �2. A precise theoretical

analysis is not in the scope of the present paper.

2) Our theoretical results rest upon the assumption of i.i.d. errors. This is di¤erent from

Bai (2009) who allows some correlation and heteroskedasticity of �ij in both cross-section

and time-series dimension. We expect that results similar to Theorem 1 can be established

in this context, although rates of convergence and, in particular, the distributions in (23)

and (24) may change in dependence of the correlation structure. A precise analysis is not

in the scope of the present paper.
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3.3 Dimensionality and model tests

Result (23) of Theorem 1(e) may be used to estimate the dimension L. A prerequisite is of

course the availability of a reasonable estimator of �2. We propose to use

�̂2 :=
1

(n� 1) � tr(I �Z�)2
nX
i=1

k(I �Z�)(Yi � �Y � (Xi � �X)�̂)k2: (25)

We want to emphasize that this estimator may have a tendency to overestimate �2, but it

is suitable for dimension selection (see proof of Theorem 2). Once L has been determined,

a better estimator is ~�2 = 1
(n�1)T

Pn
i=1 kYi� �Y � (Xi� �X)�̂�

PL
r=1 �̂irĝrk2. It follows from

the results of Theorem 1 that ~�2 is consistent and may be used in the context of model

tests (see below). We now use the following procedure to determine an estimate L̂ of L:

First select an � > 0 (e.g., � = 1%). For l = 1; 2; : : : determine

�(l) :=
n
PT

r=l+1 �̂r � (n� 1)�̂2 � tr(Z�P̂lZ�)

�̂2
q
2n � tr((Z�P̂lZ�)2)

: (26)

Choose L̂ as the smallest l = 1; 2; : : : such that �(l) � z1��, where z1�� is the 1�� quantile
of a standard normal distribution.

The following theorem provides a theoretical justi�cation of this procedure. A proof is

given in the appendix.

Theorem 2. In addition to the assumptions of Theorem 1 assume that T
nmaxf1;�1=4g ! 0

as well as Td(T )b�(n; T; �) +
d(T )
n + 1

Tc(T ) = o
�

T
nmaxf1;�1=4g

�
. Then, lim infn;T!1P(L̂ =

L) � 1 � � for �xed � > 0. Moreover, if � � �n;T is such that �n;T ! 0 and z1��n;T �
log(minfn; Tg) as n; T !1, then limn;T!1P(L̂ = L) = 1.

There are of course alternative ways for estimating L. Bai and Ng (2002) propose six

related criteria for determining the dimension of a factor model: PCp1 - PCp3 and ICp1 -

ICp3. For example, in our context PCp2 consists in minimizing

1

nT

nX
i=1

kYi � �Y � (Xi � �X)�̂ �
lX

r=1

�̂irĝrk2 + l�̂2�
n+ T

nT
log(minfn; Tg)

over l = 0; 1; : : : ; Lmax, where Lmax > L is a maximal possible number of factors, and where

�̂2� is some consistent estimate of �2. ICp1 - ICp3 use slightly di¤erent penalty functions,

thus 1
nT

Pn
i=1 kYi � �Y � (Xi � �X)�̂ �

Pl
r=1 �̂irĝrk2 is replaced by log( 1nT

Pn
i=1 kYi � �Y �

(Xi� �X)�̂�
Pl

r=1 �̂irĝrk2) in ICp1 - ICp3. It is now easily seen that under the assumptions
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of Theorem 2 these criteria will lead to consistent estimates of L.3 Di¤erent from (26) they

may still be applicable if error terms are correlated. However, we want to emphasize that

for i.i.d. errors our test-based selection method is much more speci�cally adapted to the

underlying asymptotic distribution of noise components.

Relation (24) may serve to test the validity of a pre-speci�ed parametric model of the

form vi(t) =
PL

j=1 #rigr(t) for some known basis functions gr. If Pg;L denotes the projection

matrix projecting into the n�L dimensional linear space orthogonal to spanfZ�g1; : : : ; Z�gLg,
then the null hypothesis: H0 : vi(t) =

PL
j=1 #rigr(t) is rejected if

n � tr(Pg;L�̂n;T ) � (n� 1)~�2 � tr(Z�Pg;LZ�)
~�2
p
2n � tr((Z�Pg;LZ�)2)

> z1�� (27)

Obviously, under H0 we have Pg;L = PL, and by (24) the test possesses an asymptotically

correct size. But the derivation of (24) is based on the fact that tr(PL�n;T ) = 0 and hence

tr(PL�̂n;T ) = tr(PL(�̂n;T��n;T )). If H0 is false, then generally tr(Pg;L�n;T ) = OP (Tc(T )),

and therefore tr(Pg;L�̂n;T ) = tr(Pg;L�n;T ) + tr(Pg;L(�̂n;T ��n;T )) will in tendency be too
large.

This test can of course be particularly applied to verify the validity of a standard panel

model with constant individual e¤ects. Then L = 1, Pg;L = I � 1
T 11

0 with 1 = (1; : : : ; 1)0,

c(T ) = 1, and bv(�) = bw(�
�) = 0 for all possible choices of �; ��.

4 Simulations

In this section, we investigate the �nite sample performances of the new estimator described

in Section 2 (hereafter we will call it KSS estimator) through Monte Carlo experiments. A

competing time-varying individual e¤ects estimator is based on the Cornwell, Schmidt,

and Sickles �xed e¤ects estimator (CSSW, 1990). We specify the time-varying individual

e¤ects as a second-order polynomial in time using this estimator, as the authors did in their

empirical illustration. We also consider the classical time-invariant �xed and the random

e¤ects estimators (Baltagi, 2005). These estimators also have been used extensively in

the stochastic frontier productivity literature wherein the �rm e¤ects are interpreted as

measures of relative technical e¢ ciencies.

We consider the panel data model (1):

Yit = �0(t) +

pX
j=1

�jXitj + vi(t) + �it
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We simulate samples of size n = 30; 100; 300 with T = 12; 30 in a model with p = 2

regressors. The error process �it is drawn randomly from i.i.d. N(0; 1): The values of true

� are set equal to (0:5; 0:5). In each Monte Carlo sample, the regressors are generated

according to a bivariate VAR model as in Park, Sickles, and Simar (2003, 2007):

Xit = RXi;t�1 + �it; where �it � N(0; I2); R =

0@ 0:4 0:05

0:05 0:4

1A (28)

To initialize the simulation, we choose Xi1 � N(0; (I2 � R2)�1) and generate the samples

using (28) for t � 2. Then, the obtained values of Xit are shifted around three di¤erent

means to obtain three balanced groups of �rms from small to large. We �x each group at

�1 = (5; 5)
0; �2 = (7:5; 7:5)

0; and �3 = (10; 10)
0. The idea is to generate a reasonable cloud

of points for X. In all of our data generating processes (DGP�s) we set the mean function

�0(t) = 0:

We generate time-varying individual e¤ects in the following ways:

DGP1 & DGP2 : vi(t) = �i0 + �i1
t

T
+ �i2

�
t

T

�2
DGP3 & DGP4 : vi(t) = �irt

DGP5 & DGP6 : vi(t) = �i1g1t + �i2g2t

DGP7 & DGP8 : vi(t) = �i

DGP9 & DGP10 : vi(t) = 3(�i0 + �i1
t

T
+ �i2

�
t

T

�2
) + �irt + �i1g1t + �i2g2t

where �ij (j = 0; 1; 2) �i.i.d. N(0; 0:52); rt+1 = rt+�t; where �t; �i; �i; �i; �ij(j = 1; 2) �i.i.d.
N(0; 1); g1t = sin(�t=4) and g2t = cos(�t=4): The odd numbered DGPs are those with

exogenous regressors and the even numbered DGPs are those with endogenous regressors.

The correlation between the e¤ects and the second regressor is chosen to be 0:5.4 DGP1

and DGP2 utilize time varying e¤ects that follow a second order polynomial in time that

varies from cross-section to cross-section and possess 3 common factors. DGP3 and DGP4

specify the e¤ects as random walk processes and have 1 common factor. DGP5 and DGP6

are considered in order to model e¤ects with large temporal variations and have 2 common

factors. DGP7 and DGP8 are the usual constant e¤ects models with symmetric e¤ects

and of course have 1 common factor. We consider DGP9 and DGP10 in order to provide

some evidence on the usefulness of our estimator in speaking to the ongoing debate on

the number of factors displayed by stock returns (estimates range between 2 and 10) and

23



macroeconomic time series (estimates range between 2 and 7) (Stock and Watson, 2005).

DGP9 and DGP10 generate e¤ects with 6 common factors.

For the KSS estimator, cubic smoothing splines were used to approximate vi(t) in step

1, and the smoothing parameter � was selected by using �leave-one-individual-out�cross-

validation.5 The coe¢ cient parameter � is updated using ĝr(t) obtained in step 3 of (16),

which is found to generate substantial e¢ ciency gains. However, the updated estimates

�̂
(1)
are not plugged into step 2 again because there is no e¢ ciency gain observed for ĝr(t).

Simulation experiments were repeated 1,000 times, except for the DGP�s with n=300. For

those the number of simulations is 500 times.

We now present the simulation results. Because of space limitations, we can not display

all of the Monte Carlo results.6 We do, however, present results for DGP 1, 3, and 9 and

discuss results from the other experiments. We present a variety of performance metrics

for the competing estimators based on DGP1-10. We calculate normalized mean squared

error (MSE), bias, variance, and empirical size (based on a nominal type I error of 0.05) for

the coe¢ cients. The normalized mean squared error is :

R(bv;v) =Pn
i=1

PT
t=1 (bvi(t)� vi(t))2Pn
i=1

PT
t=1 v

2
i (t)

:

We also calculate the MSE of the estimated e¤ects as well as the average optimal di-

mensions, L, chosen by �(l) criterion we outlined in the previous section. We note that

the optimal dimension, L, is correctly chosen on average for the KSS estimator in all DGPs.

Thus, we can verify the validity of the dimension test �(l) discussed in Section 3.

<Insert Tables 1,2,3 about here>

We examine the results for exogenous regressors �rst and those for endogenous regressors

later. DGP1 is consistent with the assumptions for the time-varying e¤ects of the CSSW

estimator. Hence, we may expect that the CSSW estimator performs reasonably well, which

is con�rmed in Table 1. Table 1 also shows that the performances of the KSS estimator

are comparable to those of the CSSW estimator. This implies that the KSS estimator is

quite general and e¢ cient in estimating time-varying e¤ects of the forms of smooth curves

such as the second order polynomials. As such, it is not surprising that the results of the

KSS estimator is much better than those of Within and GLS estimators by any standards.
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This is true even when the data is as small as n = 30 and T = 12. In particular, the KSS

estimator outperforms these estimators in terms of MSE of e¤ects.

DGP3 is considered to evaluate the performance of the estimators for the arbitrary form

of individual e¤ects generated by a random walk. Hence, estimators based on a relatively

simple function of time such as we used for the CSS within estimator is not su¢ cient for

this type of DGP. However, the KSS estimator does not impose any speci�c forms on the

temporal pattern of e¤ects, and thus it can approximate any shape of time varying e¤ects.

We may then expect good performances of the KSS estimator even in this situation, and

the results con�rm such a belief. The KSS estimator dominantly outperforms the other

estimators. It is particularly conspicuous in terms of MSE of e¤ects. CSSW performs

reasonably well for the e¤ects, but it is no better than the others for other criteria.

DGP5 generates e¤ects with large temporal variations. As T increases, the variations

become large. The other estimators assume pre-speci�ed and simple functional forms, thus

they are expected to perform less satisfactorily for this DGP. The KSS estimator allows

arbitrary functional forms as well as multiple individual e¤ects. Hence, it is expected to

perform well even under this DGP. Indeed, the results show that the KSS estimator performs

very well, especially for large T , with the correct number of L chosen on average.7 On

the other hand, the other estimators su¤er from severe distortions in the estimates of the

e¤ects, although coe¢ cient estimates look reasonably good.

DGP7 represents the reverse situation so that there is no temporal variation in the

e¤ects. The Within and GLS estimators work very well. However, the performance of the

KSS estimator is fairly good and comparable to those of the Within and GLS estimators.

These results indicate that the KSS estimator may be safely used even when temporal

variation is not evident. DGP9 is based on a 6 factor model for the e¤ects. The KSS

estimator dominates the other treatments for heterogeneity as the number of cross sections

and times series increase. In all experiments, the KSS estimator also has better size

characteristics than the competing treatments. It also delivers on properly identifying the

number of common factors, with an average value of L = 6.

Results from the even-numbered experiments correspond to data generating processes

which extend the preceding odd-numbered experiment to a setting in which there exists

correlation between the e¤ects and the second regressor. We can see that the treatments

in which such potential correlations are explicitly addressed via the within transformation

(Within, CSSW, KSS) dominate the other estimators in most situations when the temporal
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patterns of the e¤ects are either consistent with the particular estimator�s assumptions

or when they are nested within the estimator�s general treatment of time varying e¤ects.

However, as a general statement, across all experiments only the KSS estimator stands out

as the favored estimator. This is because the misspeci�cation of the temporal pattern of the

e¤ects appears to be as important as the added complication that the e¤ects are correlated

with the second regressors. This issue does not appear to have been given the attention in

the panel data literature that it deserves. Also, because the generation of the Xit via the

VAR speci�es a correlated set of regressors, coe¢ cient biases and resulting distortions in

estimated variances and empirical size are not localized in the second coe¢ cient but impact

the �rst coe¢ cient as well. As n and T increase the KSS estimator again dominates the

other treatments for unobserved heterogeneity.

5 E¢ ciency Analysis of Banking Industry

5.1 Empirical Model

We next compare the various estimators in an empirical illustration of e¢ ciency changes in

the US banking industry after a series of deregulatory initiatives in the early 1980�s. We

model the multiple output/multiple input banking technology using the output distance

function (Adams, Berger, and Sickles, 1999). The output distance function, D(Y;X) � 1,
provides a radial measure of technical e¢ ciency by specifying the fraction of aggregated

outputs (Y ) produced by given aggregated inputs (X). An m-output, n-input deterministic

distance function can be approximated byQm
j Y

j
jQq

kX
�k
k

� 1; (29)

for j = 1; : : : ;m and k = 1; : : : ; q where the index j denotes outputs, the index k denotes

inputs, and the 0js and the �
0
ks are weights of outputs and inputs, respectively, describing

the technology of a �rm. If it is not possible to increase the index of total output without

either decreasing an output or increasing an input, the �rm is producing e¢ ciently or the

value of the distance function equals 1.

The Cobb-Douglas stochastic distance frontier that we utilize below in our empirical

illustration can be derived by multiplying (29) through by the denominator, approximating

the terms using natural logarithms of outputs and inputs, and adding a disturbance term

�it to account for statistical noise. We also specify a nonnegative stochastic term ui(t) for
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the �rm speci�c level of radial technical ine¢ ciency, with variations in time allowed. We

then normalize the outputs with respect to the �rst output and rearrange to get

ln yJ;it =
mX
j=1

j(� ln byj;it)� qX
k=1

�k(� lnxk;it)� ui(t) + �it;

where yJ is the normalizing output and byj;it = yj;it=yJ;it; j = 1; : : : ;m; j 6= J: To streamline

notations, let Yit = ln yJ;it; and de�ne p = m � 1 + q vectors Xit with elements � ln byj;it;
, j 6= J , and � lnxk;it: Furthermore, set � = (0; �0), and vi(t) = �ui(t) � �0(t), where

�0(t) :=
1
n

Pn
i=1�ui(t). We can then write the stochastic distance frontier as

Yit = �0(t) +X
0
it� + vi(t) + �it: (30)

This model can be viewed as a generic panel data model we introduced in equation (1)

above in which the e¤ects are interpreted as time-varying �rm e¢ ciencies, and �ts into the

class of frontier models developed and extended by Aigner, Lovell, and Schmidt (1977),

Meeusen and van den Broeck (1977), Schmidt and Sickles (1984), and Cornwell, Schmidt,

and Sickles (1990)8. Once the individual e¤ects vi(t) are estimated, technical e¢ ciency

for a particular �rm i at time t is calculated as TEi(t) = exp fvi(t)�maxj=1;:::;n(vj(t))g
for the CSSW (Cornwell, Schmidt, and Sickles, 1990) and the KSS estimators. Technical

e¢ ciency is calculated similarly for the standard time-invariant �xed e¤ects and random

e¤ects estimators following Schmidt and Sickles (1984). We also consider the Battese and

Coelli (BC, 1992) estimator which is a likelihood-based random e¤ects estimator wherein

the likelihood function is derived from a mixture of normal noise and an independent one-

sided e¢ ciency error, usually speci�ed as a half-normal. In the BC estimator, e¤ect levels

are allowed to di¤er across cross-sectional units but their temporal pattern is �xed across

cross-sectional units and are speci�ed as technical e¢ ciencies TEi(t) = exp(��(t � T ))�i

where �i are independent half normal random e¤ects and � parameterizes the temporal

pattern in the �rms�e¢ ciencies.

5.2 Data

We use panel data from 1984 through 1995 for U.S. commercial banks in limited branching

regulatory environment. The data are taken from the Report of Condition and Income (Call

Report) and the FDIC Summary of Deposits9. The data set include 667 banks or 8,004

total observations.
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The variables used to estimate the Cobb-Douglas stochastic distance frontier are Y =

ln(real estate loans); X = � ln(certi�cate of deposit); � ln(demand deposit), � ln(retail
time and savings deposit), � ln(labor); � ln(capital), and � ln(purchased funds); Y � =
� ln(commercial and industrial loans/real estate loans); and � ln(installment loans/real
estate loans): For a complete discussion of the approach used in this paper, see Adams,

Berger, and Sickles (1999).

5.3 Empirical Results

The Hausman-Wu test, which tests the correlation assumptions for regressors and indi-

vidual e¤ects, was performed. The test statistic is 203.58, and the null hypothesis of no

correlation is rejected at the 1% signi�cance level. Thus there is strong evidence against the

exogeneity assumption underlying the random e¤ects GLS estimator. Consequently, in the

following analysis we do not report the results from the random e¤ects GLS estimator. The

assumption is also fatal to the consistency of the random e¤ects BC estimator. However,

we will provide estimation results for the BC estimator as well to compare them with those

from the other estimators (Within, CSSW, and KSS) which are robust to the existence of

correlation between regressors and e¤ects.

We test the dimensionality using �(l) test. The dimension L is chosen according to the

rule described in Section 3 with the maximum dimension set to 8. Using the 1% signi�cance

level, the critical value is 2.33. With L = 7 the test statistic is 1.36 which is below the critical

value. The optimal choice of dimensionality is thus 710.

< Insert Table 4 and Figure 1 about here >

Table 4 presents parameter estimates from within, BC, CSSW, and KSS11. We have also

calculated Spearman rank correlations of estimated e¤ects between the three estimators.

They show relatively close correspondences, ranging from a low of 0.7937 between KSS

and BC to a high of 0.8974 between KSS and CSSW. Average technical e¢ ciencies for

Within, BC, CSSW, and KSS are 0.4553, 0.6111, 0.6220, 0.6056, respectively12. One

may expect that during the period of deregulation �rms tend to become more e¢ cient

due to increased competitive pressures in the industry. Figure 1 displays the temporal

pattern of changes in average e¢ ciency for time-variant e¢ ciency estimators. We can

also construct an estimate of e¢ ciency change over the sample period based on a pooled

estimator that combines estimates from each of the time-varying measures. These results
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indicate a consensus growth of about 0.8% per year in e¢ ciency during the sample period.

Were these rates of cost diminution applied to the US banking industry the implied savings

based on 1995 revenues and costs (Klee and Natalucci, 2005) would be on the order of $30

billion-our estimated measure of the bene�ts from deregulation of this key service industry.

6 Conclusion

In this paper we have introduced a new approach to estimating temporal heterogeneity

in panel data models. We estimate the e¤ects using the procedure combining smoothing

spline techniques with principal component analysis. In this way, we can approximate

virtually any shapes of time-varying e¤ects. As we have pointed out, these methods can be

transparently ported to the time series literature to address the issues of proper detrending

�lters in time series models.

Simulation experiments show that previous estimators, which do not allow for general

temporal variations in e¤ects terms or which misspecify the temporal pattern of variations,

may su¤er from serious distortions. On the other hand, our new estimator performs very

well regardless of the assumption on the temporal pattern of individual e¤ects. We have

used this estimator to analyze the technical e¢ ciency of U.S. banks in the limited branching

regulatory environment for relatively small banks for the period of 1984-1995, and discovered

that the relatively small banks in our sample have became more e¢ cient over the years.

The implied savings to the banking industry by 1995, were all banks to have enjoyed a

similar e¢ ciency gain as did our sample banks, is on the order of $30b.

Of course there are extensions of our work that may be pursued. For example, relaxing

covariate exogeneity by framing our model in a multivariate system would appear to be fea-

sible. Our approach can also be used to address possible nonstationarities in univariate and

multivariate panel systems. Another extension that we are pursuing (Bada, Kneip, Sickles,

2011) and which holds promise involves extensions of our methods to examine general panel

model approaches using our factor model speci�cation when the disturbance term exhibits

various forms of weak and strong dependencies. Research on robust methods to control

for general forms of unobserved heterogeneiety while consistently estimating important co-

variate e¤ects is quite dynamic and holds great promise for development of many new and

improved estimation methods and approaches.
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7 Appendix: Proof of Theorems

The proof of our theorems relies on the following proposition which derives some basic

properties of cubic spline estimators (m = 2). We want to note, however, that our setup is

slightly di¤erent from usual spline theory which considers smoothing over the �xed interval

[0; 1].

Proposition 1. For all T � 3

1

T
k(I �Z�)vk2 � 4

�

T

T�1X
t=2

(v(t� 1)� 2v(t) + v(t+ 1))2 (A.1)

holds for all possible v = (v(1); : : : ; v(T ))0 and all � > 0. Furthermore, there exist

constants D0; D1; D2 <1 such that for all su¢ ciently large T

tr(Z2�) � D0
T

maxf1; �1=4g
;

and if � < 1, then 1
T k(I � Z�)vk

2 � D1�2

T k(I � Z1)vk2 for all v = (v(1); : : : ; v(T ))0.
Proof: We �rst analyze properties of Z�. Obviously for every � > 0 all eigenvalues of

Z� and of I � Z� are between 0 and 1. Further properties of this matrix are well studied

for spline estimators de�ned on the �xed interval [0; 1]. But we have zj(t) = z�j (t=T ), where

z1; : : : ; zT is the natural spline basis used to construct our estimator in Section 3.1, while

z�1 ; : : : ; z
�
T is a basis for all natural splines de�ned on [0; 1] with knots 1=T; 2=T; : : : ; 1. Obvi-

ously, z00j = z�
00
j =T

2. De�ning the matrices Z� and A� = f
R 1
1=T z

�(m)
j (s)z

�(m)
k (s)dsgj;k=1;:::;T

similar to Z, A in Section 3.1, some straightforward arguments show that Z� = (I +

�(Z 0)�1AZ�1)�1 = (I + �
T 4
T (Z�0)�1A�(Z�)�1)�1. Let  1 <  2 < : : : denote the eigenval-

ues of T (Z�0)�1A�(Z�)�1. Since we consider cubic smoothing splines, we have  1 =  2 = 0,

and the results of Utreras (1983) imply that there exist constants 0 < Q0; Q1 <1 such that

Q0 �  j � (�j)�4 � Q1 for all j = 3; : : : ; T and all su¢ ciently large T . Obviously, the eigen-

values of Z2�, I�Z� and (I�Z�)2 then are 1
(1+�T�4 j)

2 ,
�T�4 j
1+�T�4 j

and
�2T�8 2j

(1+�T�4 j)
2 . We can

conclude that there exist constants D1; D2; D�
2; D3; D

�
3 such that tr(Z

2
�) � D2T=maxf1; �4g

and such that for all possible vectors v with (I � Z1)v 6= 0

D�
1�
2 � v0(I �Z�)2v

v0(I �Z1)2v
� D1�

2; D�
3� �

v0(I �Z�)v
v0(I �Z1)v

� D3�; if 0 < � < 1 (A.2)

Let us now analyze bias for � � 1. By de�nition, the vector Z�v is obtained by Z�v =
(�(1); : : : ; �(T ))0, where � minimizes 1

T

PT
t=1(v(t) � �(t))2 + � 1T

R T
1 j�

00(t)j2dt with respect
to all cubic natural spline functions de�ned on the knot sequence 1; : : : ; T . Let sv denote
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the cubic spline interpolant of v, i.e. sv is the (unique) natural spline function satisfying

sv(t) = v(t) for all t = 1; : : : ; T . Since 1
T

PT
t=1(v(t) � sv(t))

2 = 0, we can conclude that
1
T k(I � Z�)vk

2 = 1
T kv � Z�vk

2 � � 1T
R T
1 s00v(�)

2d� .

The well-known properties of cubic spline interpolants (see for example de Boor, 1978)

imply that s00v(1) = s00v(T ) = 0, and s
00
v(s) = s00v(t+1)[s� t] + s00v(t)[t+1� s] for s 2 [t; t+1].

Therefore,
R T
1 s00v(�)

2d� =
PT�1

t=1
1
3(s

00
v(t)

2 + s00v(t + 1)
2 + s00v(t)s

00
v(t + 1)) �

PT�1
t=2 s

00
v(t)

2.

Furthermore, the second derivatives of sv at t = 2; : : : ; T � 1 are to be computed by the
system of equations s00v(t� 1) + 4s00v(t) + s00v(t+ 1) = 6(v(t� 1)� 2v(t) + v(t+ 1). Hence, if
B denotes the (T � 2) � (T � 2) matrix with Bij = 4 if i = j, Bij = 1 if ji � jj = 1, and
Bij = 0 if ji� jj > 1, i; j = 1; : : : ; T � 2, we obtain0BB@

s00v(2)
...

s00v(T � 1)

1CCA = 6B�1

0BB@
v(1)� 2v(2) + v(3)

...

v(T � 2)� 2v(T � 1) + v(T )

1CCA.
But B is a diagonal dominant matrix and by Gershgorin�s circle theorem its smallest

eigenvalue is larger or equal to 3. It follows that
PT�1

t=2 s
00
v(t)

2 � 4
PT�1

t=2 (v(t� 1)� 2v(t) +
v(t+ 1))2. Relation (A.1) is an immediate consequence.

Proof of Theorem 1: To simplify notation let ~Xi = Xi � �X, ~Xij = Xij � �Xj , and let

� := minf�; �2g. We obtain

�̂ = (
nX
i=1

~X 0
i(I �Z�) ~Xi)

�1
nX
i=1

~X 0
i(I �Z�)(Yi � �Y )

= � + (
nX
i=1

~X 0
i(I �Z�) ~Xi)

�1
nX
i=1

~X 0
i(I �Z�)vi + (

nX
i=1

~X 0
i(I �Z�) ~Xi)

�1
nX
i=1

~X 0
i(I �Z�)(�i � ��):

Consequently, E�(�̂)� � = (
Pn

i=1
~X 0
i(I � Z�) ~Xi)

�1Pn
i=1

~X 0
i(I � Z�)vi.

Let gr be de�ned by (7) when replacing there rt by the eigenvectors rt of �T :=

E (vivi
0j LT ). Then LT := spanfg1; : : : ; gLg, and vi =

PL
r=1 #irbr with E(#ir) = 0. Fur-

thermore, Assumption 3) and Proposition 1 imply that E(#2ir
1
T k(I � Z�)grk2) = O(�b(T ))

for all r = 1; : : : ; L. Let Xij denote the T -vectors with elements Xitj , t = 1; : : : ; T , and

recall that by the Markov inequality we have P (jZn;T j � �) � E(jZn;T jr)=�r for all pos-
sible sequences of random variables jZn;T j with E(jZn;T jr) < 1 and all � > 0. We thus

necessarily have Zn;T = OP (E(jZn;T jr)1=r). This generalizes to conditional expectations.
In the general case, the j = 1; : : : ; p elements of the vectors

Pn
i=1

~X 0
i(I �Z�)vi can thus
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be bounded by

j
nX
i=1

~X 0
ij(I �Z�)vij � n

LX
r=1

vuutj 1
n

nX
i=1

#2irj � jg0r(I �Z�)(
1

n

nX
i=1

~Xij
~X 0
ij)(I �Z�)grj

We have jg0r(I�Z�)( 1n
P

i
~Xij
~X 0
ij)(I�Z�)grj = OP (jg0r(I�Z�)E[ ~Xij

~X 0
ij j LT ](I�Z�)grj), and

Assumption 4 thus leads to jg0r(I � Z�)(
1
n

P
i
~Xij
~X 0
ij)(I � Z�)grj = OP (C1k(I � Z�)grk2).

Furthermore, 1
n

P
i #
2
ir = OP (E[#

2
irjLT ], and for any random variables Z1; Z2; V1; V2; the

relations Z1 = OP (V1); Z2 = OP (V2) imply that Z1Z2 = OP (V1V2). Together with Assump-

tion 3) and Proposition 1 we can thus conclude that

j
nX
i=1

~X 0
ij(I �Z�)vij = OP

 
n

LX
r=1

q
E[#2irjLT ] � C1 � k(I �Z�)grk2

!

= OP

 
n

LX
r=1

q
C1E[#

2
irk(I �Z�)grk2]

!
= OP (n

p
T�b(T )):

It follows from (20) as well as (A.2) that (
P

i
~X 0
i(I � Z�) ~Xi)

�1 = OP (
1

maxf1;�gnT ). When

combining these arguments we arrive at kE�(�̂)� �k = OP ((
maxf1;�gb(T )

T )1=2).

Note that Z�z = z and (I�Z�)z = (I�Z�)1=2z = 0 for all �, if z = (z(1); : : : ; z(T ))0 is a
linear function. If vi and Xi are ulc-uncorrelated, then in the notation used in the de�nition

of ulc-uncorrelatedness ~X 0
ij(I �Z�)1=2 = ~X�0

ij (I �Z�)1=2, (I �Z�)1=2vi = (I �Z�)1=2v�i , and
therefore

E[ ~X 0
ij(I �Z�)vi)2jLT ]

= tr
�
E[(I �Z�)1=2 ~Xij

~X 0
ij(I �Z�)1=2jLT ] �E[(I �Z�)1=2viv0i(I �Z�)1=2jLT ]

�
=

LX
r=1

E[#2irjLT ] � g0r(I �Z�)E[ ~Xij
~X 0
ij jLT ](I �Z�)gr = OP (T � �b(T ))

Since due to our normalization E(vi(t)vl(t)) = O(E(vi(t)
2=n), it can be shown by similar

arguments that E[ ~X 0
ij(I�Z�)vi)( ~X 0

lj(I�Z�)vljLT ] = OP (T ��b(T )=n) for i 6= l. Therefore,

E[
P

i
~X 0
ij(I � Z�)vi)

2jLT ] = OP (nT � �b(T )), and j
P

i
~X 0
ij(I � Z�)vij = OP (

p
nT � �b(T )),

which leads to kE�(�̂) � �k = OP (
p
maxf1; �gb(T )=(nT )): By Assumptions 4) and 5) as

well as (A.2) the assertion on �̂ � E�(�̂) = (
P

i
~X 0
i(I � Z�) ~Xi)

�1P
i
~X 0
i(I � Z�)(�i � ��) =

(
P

i
~X 0
i(I � Z�) ~Xi)

�1P
i
~X 0
i(I � Z�)�i follows from standard arguments.

In order to prove Assertion (b) �rst note that

v̂i = vi + ri; with ri = �(I �Z�)vi + Z�(�i � ��) + Z� ~Xi(� � �̂):
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Therefore,

�̂n;T = �n;T +B; B =
1

n

nX
i=1

(vir
0
i + riv

0
i + rir

0
i): (A.3)

�n;T possesses exactly L nonzero eigenvalues �1 > : : : �L. Assertion (b) of Lemma A.1

of Kneip and Utikal (2001) implies that for all r = 1; : : : ; L

r � ̂r = SrBr +R; with kRk �
6 supkak=1 a

0B0Ba

mins j�r � �sj2
(A.4)

and with Sr =
P

s 6=r
1

�s��rPs�
1
�r
PL+1, where Ps denotes the projection matrix projecting

into the eigenspace corresponding to the eigenvalue �s of �n;T , while PL+1 = I�
PL

r=1 r
0
r.

In order to evaluate the above expression we �rst have to analyze the stochastic order of

magnitude of the di¤erent elements of B. Consider the terms appearing in 1
n

P
i(vir

0
i+riv

0
i).

Using Assumptions 1) - 4) together with Proposition 1 some straightforward arguments now

lead to

sup
kak=1

k 1
n

nX
i=1

(I�Z�)viv0iak �
1

n

nX
i=1

sup
kak=1

jv0iaj
q
v0i(I �Z�)(I �Z�)vi = OP (T

p
c(T )�b(T ));

(A.5)

sup
kak=1

k 1
n

nX
i=1

viv
0
i(I�Z�)ak � sup

kak=1

1

n

nX
i=1

q
v0ivi jv

0
i(I�Z�)aj = OP (T

p
c(T )�b(T )); (A.6)

sup
kak=1

k 1
n

nX
i=1

(Z� ~Xi(� � �̂))v0iak �
1

n

nX
i=1

jv0iaj
q
(� � �̂)0 ~X 0

iZ2� ~Xi(� � �̂)

= OP

�
T
q
c(T )d(T )(b�(n; T; �) + 1=(nT ))

�
: (A.7)

By similar arguments

sup
kak=1

k 1
n

nX
i=1

vi(Z� ~Xi(� � �̂))0ak = OP

�
T
q
c(T )d(T )(b�(n; T; �) + 1=(nT ))

�
(A.8)

Recall that tr(Z2�) = O(T=maxf1; �1=4g). Obviously, E(tr(( 1n
P

i vi�
0
iZ�)�( 1n

P
i Z��iv

0
i))) =

OP (
Tc(T )�tr(Z2�)

n ) = OP (T
2c(T )=(maxf1; �1=4gn)), and 1

n

P
i vi��

0Z� = 0. Therefore

sup
kak=1

k 1
n

nX
i=1

Z�(�i���)v0iak � [tr((
1

n

nX
i=1

vi�
0
iZ�)�(

1

n

nX
i=1

Z��iv0i))]
1
2 = OP

 
T

s
c(T )

maxf1; �1=4gn

!
;

(A.9)

Similarly,

sup
kak=1

k 1
n

nX
i=1

vi(�i � ��)0Z�ak = OP

 
T

s
c(T )

maxf1; �1=4gn

!
: (A.10)
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For the leading terms appearing in 1
n

P
i rir

0
i we obtain

sup
kak=1

k 1
n

nX
i=1

(I �Z�)viv0i(I �Z�)ak = Op(T � �b(T )); (A.11)

sup
kak=1

k 1
n

nX
i=1

(Z� ~Xi(���̂))(Z� ~Xi(���̂))0ak = OP (Td(T ) � (b�(n; T; �) + 1=(nT ))) : (A.12)

Since all eigenvalues of Z� take values between 0 and 1, we have tr(Z�)4 � tr(Z2�) =

O(T=(maxf1; �1=4gn)), and thus E(tr[( 1n
P

i Z��i�
0
iZ���2Z2�) � ( 1n

P
i Z��i�

0
iZ���2Z2�)]) =

1
nE(tr[Z��i�

0
iZ�Z��i�

0
iZ� � �4Z4�]) = OP (tr(Z

4
�)=n) = OP (T=(maxf1; �1=4gn)). Therefore,

sup
kak=1

k 1
n

nX
i=1

(Z�(�i � ��)(�i � ��)0Z� � �2Z2�)ak = OP

 s
T

maxf1; �1=4gn

!
(A.13)

Assumption 2) additionally implies that 1
�r
= OP (

1
T �c(T )) as well as

1
mins j�r��sj = OP (

1
T �c(T )).

When combining (A.4) with (A.5) - (A.13) we thus obtain

kSrBrk � k�2SrZ2�rk+
1

mins j�r � �sj
k(B � �2Z2�)rk

= k�2SrZ2�rk+OP

 s
�b(T ) + d(T )b�(n; T; �)

c(T )
+

s
1

nc(T )maxf1; �1=4g

!
(A.14)

By de�nition of Sr we have Srr = 0. Furthermore, Assumption 3 implies that k(I �
Z�)rk = OP ((

�b(T )
c(T ) )

1=2). Hence,

k�2SrZ2�rk � k�2Sr(I �Z�)rk+ k�2SrZ�(I �Z�)rk = OP (
(�b(T ))1=2

Tc(T )3=2
); (A.15)

Let us now consider the remainder term R in (A.4). Note that all eigenvalues of Z� are

less or equal to 1, and thus supkak=1 a
0Z4�a � 1. Relations (A.5) - (A.13) then imply

supkak=1 a
0B0Ba

mins j�r � �sj2
� 2

supkak=1 a
0(B � �2Z2�)0(B � �2Z2�)a
mins j�r � �sj2

+ 2
supkak=1 a

0Z4�a
mins j�r � �sj2

= OP

�
�b(T ) + d(T )b�(n; T; �)

c(T )
+

1

T 2c(T )2
+

1

nc(T )maxf1; �1=4g
)

�
(A.16)

By (A.4), (A.14), (A.15) and (A.16) the asserted rate of convergence follows from

T�1=2kgr�ĝrk = kr�̂rk = OP

 s
�b(T ) + d(T )b�(n; T; �)

c(T )
+

1

T 2c(T )2
+

s
1

nc(T )maxf1; �1=4g

!
:
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Let us switch to Assertion (c). De�nition of �̂ir as well as Assertions a) and b) imply

�̂ri =
1

T
ĝ0r(Yi � �Y � ~Xi�̂) =

1

T
g0r(Yi � �Y � ~Xi�̂) +

1

T
(ĝr � gr)0(Yi � �Y � ~Xi�̂)

= �ri +
1

T
g0r(�i � ��) +OP

�q
�b(T ) + d(T )b�(n; T; �) + (nmaxf1; �1=4g)�1

�
:

Note that
p
T 1
T g

0
r(�i���) =

p
T � 1T g

0
r�i+oP (1). Since

1
T g

0
rgr = 1 we immediately obtain

p
T �

1
T g

0
r�i !d N(0; �

2). The asserted rate of convergence is an immediate consequence. Note

that due to g0rgs = 0 the random variables g0r�i and g
0
s�i are uncorrelated for r 6= s. Hence,

if additionally �b(T ) + d(T )b�(n; T; �) + (nmaxf1; �1=4g)�1 = o(T�1), the assertion on the

multivariate distribution of
p
T (�̂1i � �1i; : : : ; �̂Li � �Li)

0 follows from standard arguments.

Since obviously

kvi �
LX
r=1

�̂riĝrk = k
LX
r=1

(�ri � �̂ri)gr +
LX
r=1

�̂ri(gr � ĝr)k;

Assertion d) is a straightforward consequence of Assumption 2) as well as Assertions b) and

c). It remains to prove assertion (e). First note that

v̂i = Z�vi + ~ri; with ~ri = Z�(�i � ��) + Z� ~Xi(� � �̂):

Consequently, with ~�n = Z�(
1
n

P
i viv

0
i)Z� we obtain

�̂n = ~�n + ~B; ~B =
1

n

X
i

(Z�vi~r0i + ~riv0iZ� + ~ri~r0i):

~�n possesses only L nonzero eigenvalues ~�1 � � � � � ~�L with corresponding eigenvectors

~1; : : : ; ~L. Our assumptions and arguments similar to (A.4) - (A.16) then show that ~�r =

O(Tc(T )), 1
mins j~�r�~�sj

= OP (
1

T �c(T )), kr � ~rk = OP (
q

�b(T )
c(T ) ), and

k̂r � ~rk = OP

 s
d(T )b�(n; T; �)

c(T )
+

1

T 2c(T )2
+

s
1

nc(T )maxf1; �1=4g

!
(A.17)

for all r; s = 1; : : : ; L, r 6= s.

Assertion (a) of Lemma A.1. of Kneip and Utikal (2001) implies that

TX
r=L+1

�̂r = tr(PL ~B) +R�; with R� �
6L supkak=1 a

0 ~B0 ~Ba

mins j~�r � ~�sj
(A.18)

where PL = I �
PL

r=1 ~r~
0
r. Using again arguments similar to the proof of Assertion (c) it

is easily seen that

6L supkak=1 a
0 ~B0 ~Ba

mins j~�r � ~�sj
= OP

�
Td(T )b�(n; T; �)

2 +
1

Tc(T )
+

T

nmaxf1; �1=4g

�
; (A.19)
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tr(PL ~B) = tr

 
1

n

nX
i=1

PLZ� ~Xi(� � �̂)(� � �̂)0 ~X 0
iZ�

!
+tr

 
PLZ�(

1

n

nX
i=1

(�i � ��)(�i � ��)0)Z�

!
:

Some straightforward computations lead to

E

 
tr(PLZ�(

1

n

nX
i=1

(�i � ��)(�i � ��)0)Z�)
!
= �2(1� 1

n
)tr(Z�PLZ�);

Var

 
tr(PLZ�(

1

n

nX
i=1

(�i � ��)(�i � ��)0)Z�)
!
=
2�4

n
� tr((Z�P̂LZ�)2) � (1 + oP (1)) = OP

�
tr(Z4�)
n

�

Moreover, tr(Z4�=n) = O(T=(nmaxf1; �1=4g)). Since tr( 1n
P

i PLZ�
~Xi(���̂)(���̂)0 ~X 0

iZ�PL) =

OP

�
Td(T )b�(n; T; �) +

d(T )
n

�
and since by assumption Td(T )b�(n; T; �)+

d(T )
n = o

�p
T=(nmaxf1; �1=4g

�
one may invoke standard arguments to show that

tr(PL ~B) � �2
�
1� 1

n

�
tr(Z�PLZ�)q

2�4

n � tr((Z�PLZ�)2)
!d N(0; 1): (A.20)

Since tr(PL ~B) = tr(PL�̂n), (24) is an immediate consequence. By (A.17)- (A.19) , Relation

(A.20) remains valid when tr(PL ~B) is replaced by
PT

r=L+1 �̂r as well as PL by P̂L. This

proves (23) and hence completes the proof of the theorem. �

Proof of Theorem 2: It follows from arguments similar to those used in the proof of

Theorem 1 that

�̂2 =
1

(n� 1) � tr((I �Z�)2)

nX
i=1

(�i � ��)0(I �Z�)2(�i � ��)

+
1

(n� 1) � tr((I �Z�)2)

nX
i=1

v0i(I �Z�)2vi +OP
�
d(T )1=2�b(T ) � (�b�(n; T ) +

1p
nT
)

�
:

Obviously, E
�

1
(n�1)�tr((I�Z�)2)

P
i(�i � ��)0(I �Z�)2(�i � ��)

�
= �2and the properties of Z�

imply that the variance of this term converges to 0 in probability. Consequently, with

0 � Rn;T =
1

(n� 1) � tr((I �Z�)2)

nX
i=1

v0i(I �Z�)2vi = Op(maxf1; �gb(T )) (A.21)

we obtain

�̂2 = �2 +Rn;T + op (1) : (A.22)
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Let us now consider the behavior of �(l) for l < L. We can infer from (A.22) that

�(l) =

24nPL
r=l+1 �̂r � (n� 1)(�2 +Rn;T ) � tr(Z�(P̂l � P̂L)Z�)� (n� 1)Rn;T � tr(Z�P̂lZ�)

�̂2
q
2n � tr((Z�P̂lZ�)2)

+
n
PT

r=L+1 �̂r � (n� 1)�2 � tr(Z�P̂LZ�)

�̂2
q
2n � tr((Z�P̂lZ�)2)

35 (1 + oP (1)): (A.23)

By Assumption 2) and Theorem 1d) n
PL

r=l+1 �̂r =
PL

r=l+1 T
P

i �̂
2

ir is of order nTc(T ),

while (n�1)(�2+Rn;T )�tr(Z�(P̂l�P̂L)Z�) = OP (n), (n�1)Rn;T �tr(Z�P̂lZ�) = oP (nTc(T )),

and
q
2n�̂4 � tr((Z�P̂lZ�)2) = OP ((nT )

1=2). Consequently, the �rst term on the right hand

side of (A.23) increases as n; T !1, while the second term is still bounded in probability.

We can thus infer that for any l < L

P(�(l) > z1��)! 1;P(�(l) > log(minfn; Tg)! 1; and therefore P(L̂ 6= l)! 1

(A.24)

as n; T !1. Since Rn;T � 0, Theorem 1(e) implies that for �xed � > 0

lim sup
n;T!1

P(�(L) � z1��) � �; while lim
n;T!1

P(�(L) � z1��n;T ) = 0 if �n;T ! 0 (A.25)

The assertions of the theorem are now immediate consequences of (A.24) and (A.25). �
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Notes

1 In our conditions (a) - (c) sample averages could be replaced by expectations in (a) and (b) (for example

E(�ir�is) = 0 or, more generally, E(�ir�isjLT ) = 0 in case LT is a random space). We would then have

another standardization which would lead to di¤erent basis functions, let us call them g�r , which could

be determined from the eigenvectors of the (conditional) covariance matrix �T . Bai and others exactly

use this standardization. In this case g�r still depends on T , but not on n. For this case, however,

the g�r do not provide any additional information compared to our n-dependent gr. The reason is that

vi(t) =
PL

r=1 �
�
irg

�
r =

PL
r=1 �irgr for any possible realization vi. Thus the g�1 ; : : : ; g

�
L and g1 : : : ; gL simply

de�ne di¤erent possible parametrizations of vi. Nevertheless, we could use g�1 ; : : : ; g
�
L instead of g1 : : : ; gL

to derive theoretical results. There are, however, disadvantages. Additional notation would be necessary

resulting in a longer paper with little obvious value added. Furthermore, the di¤erence between g�r and

gr is of order n�1=2. Consequently, when considering the di¤erences kg�r � ĝrk and k��ir � �̂irk there will
exist an additional error of order n�1=2, and rates of convergence deteriorate. This introduces some quite

�arti�cial�bias since it only re�ects the di¤erence of standardization and not a true di¤erence in describing

and modeling vi:
2After having estimated the components of (4), one may additionally be interested in estimating the mean

function �0(t) in (1). When assuming that �0 also adopts an expansion of the form �0(t) =
PL

r=1
��rgr(t), es-

timates of the coe¢ cients ��r may be determined by minimizing
PT

t=1(
�Yt�

Pp
j=1 �̂j

�Xtj�
PL

r=1 #r ĝr(t))
2 over

#1; : : : ; #L. A more general approach consists in a nonparametric estimation similar to Step 1. Convergence

rates can be obtained in a way similar to Theorem 1 below.
3Note that our estimator �̂ of � does not depend on L. Arguments similar to those used in the proof of

Theorem 2 imply that for any l < L there exists some al > 0 such that P ( 1
nT

Pn
i=1 kYi � �Y � (Xi � �X)�̂ �Pl

r=1 �̂ir ĝrk
2 � �2 + al)! 1 as n; T !1. For L � l � Lmax a generalization of the arguments of Bai and

Ng (2002) leads to j 1
nT

Pn
i=1 kYi � �Y � (Xi � �X)�̂ �

Pl
r=1 �̂ir ĝrk

2 � �2j = OP (minfn; Tg�1). Consistency
of the Bai and Ng criteria is an immediate consequence.

4Let Xit;2 be the endogenous part of the regressors Xit generated by (27). In order to generate a regressor

that is correlated with vi(t), we de�ne a variable, Wit, such that Wit = �vi(t) + �v
p
1� �2"it where �v is

the standard deviation of vi(t) and "it �N(0; 1). Then, we see that Corr(Wit; vi(t)) = � = 0:5. With this

Wit, we generate ~Xit;2 = Xit;2+Wit, which is used as the endogenous regressor. Here, Xit;2+�v
p
1� �2"it

and �vi(t) constitute the exogenous part and endogenous part, respectively. Note that, in generating Wit,

the e¤ects vi(t) is multiplied by 10 to balance with the magnitude of Xit;2.
5We let � = (1� p)=p and choose p among a selected grid of 9 equally spaced values between 0.1 and 0.9.
6The full set of Monte Carlo results can be found at �http://www.ruf.rice.edu/~rsickles/working%20papers

/Sickles_Tables%201-12.pdf�.
7A referee asked for a comparison with the Bai and Ng (2002) criteria for the selection of the number

of factors. We ran a number of comparable Monte Carlo experiments that are available on request. We

used the same DGP1-10 and tested for the number of factors for n=30, 100, 300 and for T=12, 30. For

DGP1-8, the maximum dimension of factors is set to 5 and for DGP9-10 it is set at 8. In our simulation

experiments, we estimated the number of factors using all six criteria proposed by Bai and Ng (2002). As

noted in their paper, the criteria are inadequate for small n or T and we verify these �ndings when T=12
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or n=30. We also �nd that the IC criterion tends to underparametrize, while the PC criterion tends to

overparametrize. Particularly, for DGP9 and 10 where there are 6 di¤erent types of factors and the factors

are correlated with regressors, the performances of Bai and Ng�s criteria are very poor and unstable across

di¤erent n and T. Indeed Bai and Ng mention in their 2002 paper (page 203) that their methods work well

only when min{n,T} is 40 or larger. However, our simulation setup is for T=12, 30 which are quite small

numbers for Bai and Ng�s method. Our simulation results show exactly what is expected, that is, the IC

criterion tends to underparameterize (for DGP1, 2) and the PC tends to overparameterize (for DGP3~8).
8 In keeping with the stochastic frontier paradigm we allow the technical e¢ ciency to be correlated with

the potentially distorted relative output allocations � ln byj;it:
9For a more detailed discussion of data, see the Appendix in Jayasiriya (2000).
10When we assume L = 1 and test the null hypothesis that the individual e¤ect is constant, the test

statistic (27) is 73:91. Thus the null hypothesis of linear individual e¤ect is strongly rejected.
11We report results with ray returns to scale set to one. No signi�cant ray scale economies appear to

exist using these treatments and in other analysis conducted by the authors with these data. Moreover, the

equivalence of input and output oriented technical e¢ ciency is preserved when scale economies are unity,

thus avoiding di¢ cutlies in interpretation that have been pointed out often in the productivity literature.
12To calculate e¢ ciency scores from the e¤ects estimators, the e¤ects estimates are trimmed at the top and

bottom 5% level (see Berger, 1993). This does not apply to the BC estimator because it directly calculates

e¢ ciencies. For the time-varying e¤ects estimators, the �rms which enter the top and bottom 5% range of

e¤ects in any time periods were excluded in calculating average e¢ ciencies. Therefore, in this sense, it is

not fair to directly compare the e¢ ciencies from the Within or BC estimators with those from the CSS and

KSS estimators.
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of E¤ects

n T Within GLS CSSW KSS L

30 12 0.1770 0.1746 0.0091 0.0091 2.407
30 0.1416 0.1416 0.0210 0.0239 2.805

100 12 0.5203 0.5278 0.0076 0.0078 2.964
30 0.1240 0.1240 0.0029 0.0030 3.010

300 12 0.1025 0.1025 0.0059 0.0060 3.004
30 0.6750 0.6865 0.0260 0.0265 3.006

MSE, Bias, Variance, and Size for Coe¢ cients
T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0726 0.0638 0.0087 0.0087 0.0247 0.0236 0.0024 0.0026
BIAS1 0.0006 0.0307 0.0015 0.0000 0.0055 0.0169 -0.0007 -0.0012
BIAS2 0.0018 0.0318 0.0012 0.0009 -0.0026 0.0087 0.0003 -0.0002
VAR1 0.0355 0.0302 0.0043 0.0043 0.0122 0.0115 0.0012 0.0013
VAR2 0.0371 0.0316 0.0044 0.0044 0.0124 0.0117 0.0012 0.0012
SIZE1 0.143 0.137 0.083 0.094 0.177 0.168 0.059 0.081
SIZE2 0.172 0.156 0.075 0.087 0.153 0.156 0.048 0.060

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0185 0.0164 0.0027 0.0027 0.0068 0.0065 0.0007 0.0007
BIAS1 -0.0021 -0.0006 0.0003 0.0003 -0.0012 -0.0024 -0.0002 -0.0003
BIAS2 0.0033 -0.0005 0.0016 0.0015 -0.0007 -0.0019 0.0000 0.0001
VAR1 0.0095 0.0083 0.0012 0.0013 0.0033 0.0031 0.0004 0.0004
VAR2 0.0091 0.0080 0.0015 0.0015 0.0035 0.0033 0.0004 0.0004
SIZE1 0.163 0.149 0.068 0.072 0.164 0.163 0.058 0.072
SIZE2 0.155 0.141 0.097 0.098 0.171 0.162 0.067 0.068

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0061 0.0061 0.0009 0.0009 0.0021 0.0021 0.0002 0.0002
BIAS1 -0.0021 -0.0179 -0.0005 -0.0003 -0.0014 -0.0071 -0.0001 0.0000
BIAS2 -0.0006 -0.0162 0.0015 0.0014 0.0030 -0.0027 0.0004 0.0004
VAR1 0.0032 0.0029 0.0005 0.0005 0.0011 0.0011 0.0001 0.0001
VAR2 0.0029 0.0026 0.0004 0.0004 0.0010 0.0009 0.0001 0.0001
SIZE1 0.254 0.176 0.092 0.094 0.186 0.180 0.070 0.076
SIZE2 0.160 0.150 0.060 0.062 0.146 0.132 0.060 0.060
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Table 2. Monte Carlo Simulation Results for DGP3

MSE of E¤ects

n T Within GLS CSSW KSS L

30 12 0.1655 0.1630 0.0601 0.0170 1.005
30 0.0976 0.0975 0.0691 0.0100 1.000

100 12 0.1554 0.1547 0.0491 0.0117 1.000
30 0.0890 0.0890 0.0624 0.0074 1.000

300 12 0.1480 0.1484 0.0450 0.0103 1.000
30 0.0860 0.0861 0.0597 0.0065 1.000

MSE, Bias, Variance, and Size for Coe¢ cients
T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0241 0.0208 0.0137 0.0047 0.0070 0.0067 0.0066 0.0019
BIAS1 0.0003 0.0139 0.0011 -0.0023 0.0056 0.0092 0.0061 0.0003
BIAS2 0.0044 0.0181 0.0037 0.0000 -0.0003 0.0034 -0.0005 -0.0017
VAR1 0.0120 0.0101 0.0063 0.0022 0.0035 0.0034 0.0034 0.0009
VAR2 0.0121 0.0102 0.0074 0.0025 0.0034 0.0033 0.0032 0.0010
SIZE1 0.100 0.100 0.079 0.055 0.111 0.114 0.120 0.046
SIZE2 0.118 0.102 0.090 0.059 0.107 0.103 0.115 0.065

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0097 0.0084 0.0049 0.0014 0.0020 0.0020 0.0019 0.0005
BIAS1 -0.0044 -0.0064 -0.0012 -0.0013 0.0001 -0.0028 -0.0002 0.0010
BIAS2 -0.0031 -0.0049 -0.0020 0.0005 0.0003 -0.0025 -0.0005 0.0012
VAR1 0.0045 0.0039 0.0024 0.0007 0.0010 0.0010 0.0010 0.0003
VAR2 0.0052 0.0045 0.0025 0.0007 0.0010 0.0010 0.0010 0.0003
SIZE1 0.097 0.090 0.082 0.045 0.090 0.104 0.098 0.046
SIZE2 0.130 0.115 0.105 0.051 0.082 0.084 0.088 0.046

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 0.0034 0.0043 0.0017 0.0005 0.0007 0.0007 0.0006 0.0002
BIAS1 -0.0001 -0.0265 -0.0017 0.0029 -0.0018 -0.0064 -0.0003 0.0020
BIAS2 0.0012 -0.0251 -0.0004 0.0005 0.0003 -0.0043 -0.0004 0.0014
VAR1 0.0018 0.0015 0.0008 0.0002 0.0003 0.0003 0.0003 0.0001
VAR2 0.0016 0.0014 0.0009 0.0002 0.0004 0.0003 0.0003 0.0001
SIZE1 0.114 0.176 0.080 0.054 0.090 0.104 0.098 0.046
SIZE2 0.104 0.150 0.094 0.048 0.082 0.084 0.088 0.046
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Table 3. Monte Carlo Simulation Results for DGP9

MSE of E¤ects

n T Within GLS CSSW KSS L

30 12 0.1792 0.1781 0.0468 0.0013 4.957
30 0.1654 0.1653 0.0558 0.0004 5.000

100 12 0.1545 0.1540 0.0427 0.0006 5.000
30 0.1568 0.1567 0.0600 0.0002 5.987

300 12 0.1823 0.1821 0.0578 0.0003 5.996
30 0.1904 0.1903 0.0746 0.0003 6.000

MSE, Bias, Variance, and Size for Coe¢ cients
T=12 T=30

n=30 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 13.3517 12.4807 5.3708 0.2495 4.3252 4.2655 1.5867 0.0141
BIAS1 -0.1185 -0.7992 0.0748 0.0261 -0.0112 -0.2617 0.0109 0.0027
BIAS2 0.0952 -0.5965 0.029 0.0088 -0.0467 -0.2961 -0.0004 0.0003
VAR1 6.8048 5.8531 2.6004 0.1262 2.1655 2.0557 0.8162 0.0071
VAR2 6.5238 5.633 2.7639 0.1225 2.1574 2.0536 0.7704 0.0069
SIZE1 0.165 0.173 0.172 0.196 0.157 0.157 0.152 0.125
SIZE2 0.156 0.147 0.189 0.197 0.168 0.163 0.144 0.12

n=100 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 3.863 3.3662 1.6696 0.0342 1.3015 1.2465 0.5392 0.0021
BIAS1 0.102 0.0316 0.0866 0.0039 -0.0172 -0.0445 -0.0271 0.0021
BIAS2 0.0578 -0.0123 -0.0087 0.0013 0.0058 -0.0221 0.0096 -0.0007
VAR1 1.9732 1.7301 0.8488 0.0179 0.6622 0.6333 0.286 0.0011
VAR2 1.8761 1.635 0.8133 0.0163 0.6390 0.6107 0.2523 0.0011
SIZE1 0.153 0.138 0.172 0.140 0.147 0.141 0.149 0.069
SIZE2 0.136 0.121 0.160 0.119 0.156 0.153 0.128 0.07

n=300 Within GLS CSSW KSS Within GLS CSSW KSS

MSE 1.3521 1.1517 0.6465 0.0065 0.4562 0.4314 0.185 0.0009
BIAS1 0.0367 -0.0087 0.0234 0.0069 0.0104 0.0025 0.0186 0.0011
BIAS2 0.0382 -0.0045 0.0008 -0.0025 0.0028 -0.0044 -0.0198 -0.0017
VAR1 0.7071 0.6006 0.3303 0.0031 0.231 0.2186 0.0891 0.0005
VAR2 0.6423 0.5509 0.3156 0.0034 0.225 0.2128 0.0952 0.0004
SIZE1 0.182 0.154 0.178 0.132 0.162 0.154 0.136 0.060
SIZE2 0.166 0.152 0.17 0.132 0.168 0.166 0.162 0.054
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Table 4. Estimation Results

Within BC CSSW KSS
CD -0.0357 (0.0047) -0.0332 (0.0043) -0.0095 (0.0032) -0.0008 (0.0019)
DD -0.0678 (0.0155) -0.0244 (0.0124) -0.0908 (0.0134) -0.0410 (0.0109)
OD -0.1451 (0.0097) -0.1433 (0.0091) -0.1295 (0.0069) -0.0440 (0.0200)
lab -0.1517 (0.0165) -0.1403 (0.0130) -0.1639 (0.0139) -0.1254 (0.0093)
cap -0.0456 (0.0054) -0.0523 (0.0048) -0.0461 (0.0054) -0.0289 (0.0053)
purf -0.5522 (0.0208) -0.6065 (0.0151) -0.5601 (0.0162) -0.7598 (0.0268)
ciln 0.1583 (0.0045) 0.1596 (0.0042) 0.1468 (0.0037) 0.1202 (0.0031)
inln 0.3745 (0.0061) 0.3639 (0.0054) 0.3512 (0.0056) 0.3237 (0.0050)
time 0.0154 (0.0009) 0.0023 (0.0013) - -

Avg TE 0.4553 0.6111 0.6220 0.6056
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